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ABSTRACT

The square root characteristic commonly used to model the flow through hydraulic orifices is not accurate
for small pressure differences. Moreover, it may cause numerical problems because the derivative of the
flow with respect to the pressure difference tends to infinity when the pressure difference approaches
zero.

We propose anempiricalflow formula that provides a linear relation for small pressure differences
and the conventional square root law for turbulent conditions. The transition from the laminar to the
turbulent region is smooth. Since the slope of the characteristic is finite at zero pressure, numerical
difficulties are avoided. The formula employs two parameters which have a physical meaning. The
proposed orifice model has been tested in a bond graph of a small hydraulic sample circuit. The system
has been simulated by means of the 20-sim modeling and simulation package which is particularly suited
for bond graph models.
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1 INTRODUCTION

Orifices, sometimes of variable cross section, are an essential component in hydraulic circuits. Fre-
quently the fluid flowQ through an orifice is assumed to be proportional to the square root of the pressure
drop across the orifice

√
∆p.

Q = cd ·A ·
√

2
ρ
|∆p| · sign(∆p) (1)

(In eq. (1) cd denotes the discharge coefficient,A is the cross section area of the restriction). This
formula strictly holds for an incompressible steady state flow. It describes the flow with good accuracy
for turbulent flow conditions. However, since the actual form of the fluid flow strongly depends on the
geometry of the restriction, in particular whether it is a sharp edged one, and since small disturbances
may lead to a change from laminar to turbulent flow conditions, the formula is utilized even when the
flow might be laminar. While for the above reasons it might be thought not worthwhile to distinguish
between laminar and turbulent flow, a drawback of using this formula for both regimes of flow is that
during the simulation of a hydraulic circuit numerical difficulties may be encountered due to the fact

1



Figure 1. Discharge coefficient versus the square root of the Reynolds number (Merritt, 1967)

that the derivative of the flow with regard to the pressure drop tends to infinity while the pressure drop
approaches zero. The automatic time step adjustment of a non stiffly stable integration algorithm will
drastically reduce the time step. As a result the simulation will be slowed down considerably or may
even fail. If a stiffly stable integration algorithm with a fixed step size is chosen, numerical stability
is ensured, but the accuracy depends on the chosen step size. The square root characteristic not only
introduce the potential danger of numerical problems; for laminar flow it is more reasonable to assume
that the flow depends linearly on pressure drop for small values of the pressure drop. In the following
we propose an empirical formula that effectively provides a linear relation for small pressure differences
and the conventional square root law for turbulent conditions. The transition from the laminar to the
turbulent region is smooth, that is, the derivative exhibits no discontinuity. Other formulae have been
given (Ellman and Vilenius 1990), (Ellman and Piché 1999) They use a switching method and two
equations with a smoothed transition point.

2 A FLOW FORMULA FOR LAMINAR AND TURBULENT FLOW CONDITIONS

The above square root law, eq. (1) is derived from Bernoulli’s energy equation for an incompressible
steady state flow. The coefficientcd accounts for energy losses. It depends on the geometry of the
restriction and of the Reynolds numberR which characterizes the mode of the flow. Often a constant
value holding forturbulentconditions is adopted. However, it is known that the discharge coefficientcd
is a non-linear function of

√
R (Merritt 1967). If the so-called hydraulic diameterDh of the orifice is

known, the Reynolds number can be expressed by the volume flow rateQ

R =
Dh

A · ν
·Q (2)

In eq. (2) the kinematic viscosityν depends on the temperature and the pressure. Often an average value
is used. Observing thatcd is a non-linear function of the Reynolds numberR and by combining equations
(1) and (2) we see that the volume flow rate through an orifice is determined by animplicit non-linear
equation of the form

Q = f(Q) ·A ·
√

2
ρ
|∆p| · sign(∆p) (3)

A calculation of the volume flow rate based on eq. (3) is costly in regard to computational time since
numerical iteration is required. By looking at the plot of the discharge coefficient versus the square root
of the Reynolds number given by Merritt (Merritt 1967) (cf. Fig. 1) we see that the relation may be
approximated by

cd = k ·
√
R (4)
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for small Reynolds numbers, and by a constantcturb for large values ofR.

cd = cturb := 0.61 (5)

By determining the Reynolds numberRt at which the linear characteristic intersects with the constant
value ofcd the curve in Fig. 1 might be approximated by a piecewise linear function (cf. (Merritt 1967),
p. 45). However, at the transition pointRt where the relation changes from one equation to the other, we
have a discontinuity in the derivative. As an alternative we propose anempiricalapproximation of the
nonlinear relationcd = f1(

√
R) in Fig. 1 with the following features.

1. The approximation is given by a single relation for all Reynolds numbers.

2. For small pressure differences it provides a linear relation between the flow through the orifice and
the pressure drop. For turbulent flow conditions it matches the conventional square root character-
istic.

3. The transition from the laminar flow region to turbulent flow conditions is smooth.

4. The parameters employed have a physical meaning.

A simple formula that meets the above requirements is

cd =
cturb ·

√
R√

R +
√
Rt

(6)

For small values ofR this approximation reduces to

cd ≈
cturb√
Rt
·
√
R (7)

By substituting (7) into (1) and eliminatingR by means of (2) in fact, we obtain a linear relation between
the volume flow rateQ and the pressure drop∆p across the orifice, for laminar flow.

Q =
(
cturb√
Rt

)2

· 2ADh

ρ · ν
·∆p (8)

For large Reynolds numbersR� Rt we havecd ≈ cturb. In that case the discharge coefficient in eq. (1)
is a constant. Hence, in the turbulent region the flow is determined by the conventional square root
characteristic. Finally, substituting eq. (2) into (6) and the result into eq. (1) yields a quadratic equation
for
√
|Q| instead of an implicit non-linear relation for Q of the form given by eq. (3).

(
√
|Q|)2 +

√
RtAν

Dh

√
|Q| = cturbA

√
2
ρ
|∆p| (9)

As can be clearly seen from this equation, it is the second term that makes the difference to the con-
ventional square root law for turbulent flow conditions. The quadratic eq. (9) for

√
|Q| has one unique

solution. If the volume flow rate,Q, (Q > 0) is differentiated with respect to∆p, after a lengthy
calculation including l’ Hospital’s rule we obtain for the gradient at zero pressure drop

dQ

d(∆p)

∣∣∣∣
∆p=0

=
2Ac2

turbDh

ρ · ν ·Rt
=:

1
a
. (10)

In Fig. 2 the volume flow rate,Q, obtained from eq. (9) is plotted (lower line) versus
√

∆p for positive
pressure differences. For comparison the flow through an orifice according to eq. (1) withcd = cturb
(purely turbulent case) is given by the upper line. As can be seen the values of the flow according
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Figure 2. FlowQ through an orifice versus
√

∆p for the turbulent case (upper line) and the laminar-
turbulent model (lower line)

to eq. (9) are below those according to eq. (1) withcd = cturb. In regard to the conventional purely
turbulent flow model our proposed formula (6) now results in an over-estimate of energy losses in the
orifice, rather than the traditional under-estimate. This larger pressure drop corresponding to a given
flow now includes the viscosity effects which dominate laminar flow and which are not properly taken
into account by the purely turbulent flow model. Still, the proposed approximation ofcd approaches the
asymptotic valuecturb too slowly. The relative deviation fromcturb is

ε :=
cturb − cd

cd
=

√
Rt√

R+
√
Rt

(11)

For round sharp-edged orifices Wuest has theoretically determined the relation

cd = 0.2 ·
√
R (12)

By comparing this relation with eq. (7) we obtainRt = 9.33. Hence, atR = Rt the relative deviation is
50%. ForR = 49 ·Rt it is 12.5%, and forR = 2000 it is still 6.4%.

Better results may be obtained by a slight modification of eq. (6).

cd =
cturb ·

√
R√

R+Rt
(13)

This formula also meets the above requirements.
Replacing the Reynolds numberR by the volume flow rateQ by means of eq. (2) and substituting

the resulting expression forcd into eq. (1) gives a quadratic equation for the flowQ

∆p =
ρ · ν ·Rt

2Ac2
turbDh

·Q +
ρ

2A2c2
turb

Q2 · sign(Q) , (14)

which has the unique solution

Q = ( cturb ·A ·

√
2
ρ
|∆p| +

(
νRt

2CturbDh

)2

− A · ν Rt
2Dh

) · sign(∆p) . (15)

By looking at eq. (14) we see that we have determined the parametersa, b in the formula

p = a · V̇ + b · V̇ 2 · signV̇ (16)

given in (Thoma 1999). (Note, in (Thoma 1999) the pressure drop across the orifice is denoted byp.)
Eq. (14) clearly shows the term accounting for laminar flow missing from eq. (1). It accounts for the
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— cd =
cturb
√
R√

R +
√
Rt

— cd =
cturb
√
R√

R + Rt

Figure 3. A comparison of both approximations ofcd versus
√
R

viscosity,ν, of the fluid while the second term is independent ofν. For small flow values the linear term
is dominant over the quadratic term. For smallQ > 0 eq. (16) reads

∆p = a ·Q(1 +
b

a
Q)

= a ·Q(1 +
R

Rt
) ≈ a ·Q . (17)

By differentiating eq. (14) (Q > 0), which uses the improved eq. (13) forcd we obtain for the same
gradient of the Q versus∆p characteristic at zero pressure drop an identical result to that of eq. (10)

With

Qt :=
A · ν
Dh

·Rt (18)

pt :=
Q2
t

c2
turbA

2 2
ρ

(19)

eq. (14) can be written in the form

∆p
pt

=
(
Q

Qt

)
+
(
Q

Qt

)2

(20)

From eq. (20) we see that whenQ = Qt the normalized pressure drop∆p/pt is twice the normalized
pressure drop we obtain from the purely turbulent model (eq. (1) withcd = cturb)

For eq. (13) the relative deviationε from cturb is smaller than for eq. (6).

R =Rt : ε = 29.3%
R = 49 ·Rt : ε = 1%

Fig 3 shows a comparison of both approximations. In regard to the curve given by Merritt (cf. Fig. 1)
both approximations stay below the asymptotic valuecturb. That is, energy losses are somewhat over-
estimated especially near the transition region.
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Figure 4. Hydraulic circuit and simple bond graph of a speed regulator

3 AN EXAMPLE

Fig. 4 shows the circuit schematic and a simple bond graph model of a hydraulic sample system, e. g. a
large wood chipping machine with a large rotor. The system operates as a speed regulator. At no load
there is only a small flow that passes through the orifice (Ro) and the pressure is low. If the load is
almost totally inertia, the pressure is high during the start and then falls. As there are two regimes of
high pressure and low pressure the system is suitable to test the orifice model we propose. The manually
operated two-way valve allows for changing the orientation of the rotation. The bond graph model is
kept intentionally as simple as possible in order to study the effect of the new orifice model. The C
element represents the compressibility of the fluid in the system volume of the filter and the hydraulic
line. Losses due to the pressure relief valve and the two-way valve are neglected. The hydraulic motor is
modeled just as an ideal transformer. The R element attached to the 1-junction of the angular velocity of
the load accounts for efficiency losses of motor.

The bond graph model has been entered into the 20-sim modeling and simulation package (Broenink
1999). Fig. 5 shows the dynamic behavior of the system due to a jump of the volume flow rate,Qpump,
from 0 to 30 l/min delivered by the pump att = 0.5s. As can be clearly seen, the pressure indeed rises
swiftly to high values during the start and falls to low values when the angular velocity of the load,ω,
approaches a steady state value of about5 rad/s. At the maximum of the pressure drop,dpRo, across the
orifice the volume flow rate,QRo, through the orifice is about0.29 litres/s. That is,58% of the volume
flow rate,Qpump, delivered by the pump goes through the orifice att = 0.78s. The corresponding
Reynolds number is about63.5 · 103. Hence the flow through the orifice is turbulent at that time point.
At steady state (t = 1.5s) QRo ≈ 0.0023 litres/s which is only0.45% of Qpump. The Reynolds number
is about497. That is, at steady state the flow through the orifice is laminar!

If we replace our orifice model for laminar and turbulent conditions by the standard square root
characteristic valid for turbulent flow only, we obtain results close to that depicted in Fig. 5 as can be
seen by comparison with Fig. 6. That is, simulation runs using our new orifice model provide results to
be expected. The volume flow rate versus pressure drop characteristic however has a finite gradient at
zero pressure. Given the parameters of the example system the orifice characteristic is depicted in Fig. 7.
The gradient at zero pressure is1/a = 0.359 · 10−6[m3/sPa]. The different orifice flow rates in each
model can just be detected near the steady state flow in figures 5 and 6. The proposed new model shows
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Figure 5. Step response of the hydraulic system (model for laminar and turbulent conditions)

Figure 6. Step response of the hydraulic system (turbulent flow model)

a slightly higher pressure drop through the orifice due to the laminar flow portion of the model. The new
model’s benefits are also important at start-up when the pressure is low.

4 CONCLUSIONS

The function of all resistor models in the dynamic behavior of a system model is to dissipate energy.
This energy loss reduces overshoots and stabilizes oscillations. The proposed models use an averaged
approximation to the truecd curves, which depend both on orifice geometry and Reynolds number.
This approximation is a substantial improvement on totally neglecting laminar flow. Using such an
approximation can be justified because it is the total energy dissipated in one oscillation which matters.

While the model has been developed for an orifice, notice that it is easy to find an equivalent term
for pipe losses. The well known Darcy pipe flow/pressure drop formula, which gives head loss as a
function of the flow velocity, can be rearranged to match eq. (1) above. It can be shown that the discharge
coefficient,cd, can be replaced by

√
Dh/(8 · f · L). Although friction factor,f , is a function of Reynolds

number, its laminar portion is accounted for in eq. (6) by suitably choosingRt. The limiting value off
can be used to find the equivalentcturb. Thus this model can be used to approximate pipe flow losses as
well as for orifices; the transitionR needed for a a pipe is near 2000. Again, it is the total energy that
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Figure 7. Characteristic of the orifice with finite gradient at zero pressure drop

matters.
The errors introduced by the proposed models are greatest at low flow rates nearRt. The value

of the discharge coefficientcd is lower than the true value for low Reynolds Numbers. Unless the
proposed models are used, small flow rates calculated with the turbulent flow equation will seriously
under-estimate the energy losses. The proposed models over-estimate the losses. However, since many
small losses are often neglected, it may be preferable to over-estimate losses than the reverse, when using
numerical integration. Fig. 2 clearly shows how neglecting laminar flow equations predict a much lower
pressure drop than really occurs due to the viscosity effects which dominate laminar flow. In order to
achieve stability in the numerical integration of a model, it is important not to neglect stabilizing energy
losses which occur during the early stages of the integration. This orifice model is a contribution to that
aim. The model is easily described in a modeling language, e. g. SIDOPS or Modelica, to be included in
a library of bond graph models of hydraulic devices.

REFERENCES

Broenink, J. F. (1999). 20-sim software for hierarchical bond-graph/block-diagram models.Simula-
tion Practice and Theory 7(5–6), 481–492.

Ellman, A. and R. Pich́e (1999). A two regime orifice flow formula.Trans. ASME Journal of Dy-
namic Systems, Measurement, and Control121, 721–724.

Ellman, A. and M. J. Vilenius (1990). Methods for simulating the steady-state and dynamic behavior
of two-way cartridge valve circuits.SAE J. of Commercial Vehicles99, 384–393.

Merritt, H. E. (1967).Hydraulic Control Systems. Wiley & Sons.
Thoma, J. U. (1999). Bondgraphs and practical simulation.Simulation Practice and Theory 7(5-6),

401–417.

8


	INTRODUCTION
	A FLOW FORMULA FOR LAMINAR AND TURBULENT FLOW CONDITIONS
	AN EXAMPLE
	CONCLUSIONS
	Menu
	Introduction
	-------------------------------
	Search in current document
	Search CD-Rom
	Open found results
	Print
	-------------------------------
	Sessions index
	Authors index
	Overview Keywords
	-------------------------------
	Preface
	Commissions - Sponsors
	President of Eurosim 2001
	-------------------------------
	Quit Eurosim 2001


