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Abstract

The paper presents an original approach to the whole genome treatment of an asexual haploid
population under mutation and selection.
The genes are partitioned into short stretches of nucleotides, theelements, which have different
degrees of intolerance toward mutations. In the first step ofthe analysis a genome is considered
as a finite set of elements deprived of their association withgenes. In particular, thefitness
composition of the genome, i.e. the partition of the deleterious elements into different fitness
classes, can be described in each generation and the equilibrium.
The second and third steps describe a novel effect: A displacement of the fitness composition
in individual genes, which also continues in the mutation-selection balance. Together with the
finiteness of the genome this allows for the retrieval of the information abandoned in the first
part: sets of elements which are classified with respect to fitness can be re-associated with
genome components and finally with individual genes. Hence,the most probable fitness com-
position of individual genes in the equilibrium can be determined.
In the second part of the present paper an algorithm is described which allows to simulate
genomes using the model outlined above. The program acceptsas input the description of a
genome by the declaration of its genes (its length and the tolerance towards mutations of its
elements). Using the model and additional methods like dynamic programming, the algorithm
predicts the fitness composition of individual genes in the equilibrium. Examples show in par-
ticular, that a change in one gene has an effect on the other genes which remain unchanged.

Keywords: population genetics, whole genome microevolution, mathematical modelling,
fitness, mutation-selection equilibrium.
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1 Introduction
Classical population genetics usually considered only
one or very few loci over generations in a population.
However, selection acts on the whole genome and not
on individual genes. To consider many genes in detail at
the same time is very difficult, and mathematically only
feasible for rather small numbers of genes ([1]). There
are different global approaches to model the genomes
of populations over generations and in the steady state
(for an overview see e.g. [2]), one of the most important
ones is the neutral theory created by Kimura (e.g. [3]),
which, however, ignores the impact of selection, as all
mutations are assumed to be neutral.

The presented model belongs to the wide class of
selection-mutation models initiated by the work of
Kimura and Maruyama [4] (but the idea can be traced
back to Haldane [5]). These models were designed to
approach different problems, among others, the evo-
lution of muation rates ([6], [7], [8], [9], [10]). Ex-
tended by the description of a relation between fitness
and the value of a multi-locus trait this type of model
was applied to problems in quantitative genetics like
evolution of reproduction, maintenance of phenotypic
and molecular variability and evolution of mating pref-
erences (e.g. [11]).

In the present paper a model is suggested that describes
a population which is affected by mutation and selec-
tion over generations and where there are still dynamics
in the steady state. These changes in the equilibrium are
described and used to return from the very global and
anonymous approach to the identification of individual
genes and their fitness. The model allows simulations
of explicit genomes made up from genes and predicts
the most probable fitness composition of each gene.

2 The Problem and the Model
An effectively infinite strictly asexual haploid popu-
lation with non-overlapping generations in a constant
environment is considered. The genome of an in-
dividual is a union ofJ genes, which is exposed
to successive selection and mutation steps in each
generation. The genome may also contain non-coding
regions, which can be considered as a subset of genes
with no function.

The genome is considered as a set of elements, each
of which is a short stretch of nucleotides, chosen to be
significantly smaller than a gene size and such that any
element is part of only one gene.

Thus, the genome is modelled as a finite setM of el-
ements, which is partitioned into the genesGj , j =
1, . . . , J , which are constant as sets and which make a
partition of the setM:

M =
J⋃

j=1

Gj .

There areN +1 fitness classes. In any generation, each
element is assigned a local fitness from one of these

classes. There is no epistasis, i.e., the fitness of a gene
is the product of the fitnesses of its elements, and the fit-
ness of a genome is the product of the fitnesses of all the
elements, in particular, the fitness of the genome is the
product of the fitnesses of its genes. Elements in classn
have local fitnesssn for all 0 ≤ n ≤ N. The class0 has
fitnesss0 = 1 whereas the other classes have fitnesses
1 > s1 > s2 > · · · > sN > 0 and contain deleterious
elements.

Mutations change the fitness of individual elements. A
mutation hits only one element at a time, only point
mutations are treated here. Any element mutates with
the probabilityu, and the mutation may transfer the el-
ement into a different fitness class. Thus, recurrent and,
hence, positive mutations are possible.

In addition there is a third partition of the elements
which reflects the structural feature of a genome called
the functional constraint is introduced. The elements
of the genome are assigned toI risk classesR(i), i =
1, . . . , I:

M =
I⋃

i=1

R
(i).

A risk classR(i) is equipped with a set of parameters

Γ(i) = {γi0, γi1, . . . , γiN},

with
∑N

n=0 γin = 1. These parameters, called the
mutation priorities, regulate the behaviour of an
element as follows: When an element in risk classR

(i)

mutates, it transfers into fitness classn with probability
γin.

The partition of the genome into theI risk classes is
fixed throughout the dynamics.

Individual genes are themselves partitioned into risk
classes: For anyj = 1, . . . , J , the geneGj is divided

into fixed disjoint subsets,G(i)
j (i = 1, . . . , I), which

are calledgene risk subsets, such that

G
(i)
j = R

(i) ∩ Gj , Gj =

I⋃

i=1

G
(i)
j . (1)

Similarly, each risk classR(i) can be expressed as a
disjoint union of the corresponding gene risk subsets
G

(i)
j over all the genes, i.e.,

R
(i) =

J⋃

j=1

G
(i)
j . (2)

So far the necessary notation and the building blocks
of the model are established. It should be pointed out
that the finiteness of the genome is essential for the next
section, where the three steps are described which lead
to the fitness composition of individual genes.
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3 Fitness composition of individual genes
It is possible to derive thefitness compositionacquired
in the mutation-selection balance by each gene, i.e., the
distribution of the elements into fitness classes for each
gene. Assuming that a partition of the genome into risk
classes is fixed, this distribution is determined in three
major steps.

1. In the first step the functionality of the elements
is ignored and the genome is considered as a set
of anonymous elements, whose dynamics are de-
scribed. These results are adapted from [12] and
yield a description of the equilibrium, in particular
the distribution of the number of deleterious ele-
ments is known, as well as the expected number of
elements,An, in each fitness classn.

2. In the second step, the fitness composition of the
individual risk classes in the mutation-selection
balance is retrieved. This retrieval procedure is
mainly possible, because the genome in the model
is finite. In the equilibrium two partitions of the el-
ements of the genome are considered: On the one
hand, the partitioning into risk classes; on the other
hand from the former step the expected numbers of
elements in each fitness class are known. Let the
number of elements in risk classR(i) which be-
long to fitness classn be denoted byyin. In the
equilibrium mutation and selection still affect the
population, and the parameters{yin} are chang-
ing, but such that the following holds

N∑

n=0

yin = |R(i)|, (i = 1, . . . , I) and

I∑

i=1

yin = An, (n = 0, . . . , N).

(3)

It turns out that there is only one kind of change
which obeys the following three conditions:

(a) The left side of (3), which holds per defini-
tion of risk classes with a fixed number of
elements, is satisfied;

(b) A change corresponds to the physical nature
of mutation, and

(c) Only the changes surviving the balancing se-
lection are considered; this means, the right
side of (3) is satisfied.

These changes to the set{yin} are analysed.

A discrete time scale is introduced, such that at
any time (3) is true and that during each time
step at most two independent transfers (due to
mutations) can take place. The situation can be
described by the following double constrained
random process visualised by the graph in figure 1.
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Fig. 1 The elements ofM are partitioned into risk
classesR(i) (on the left) and into fitness classes (on the
right). The number of elements inR(i) and in fitness
classn is yin.

The most probable set{yin} is determined ap-
plying the balancing method, the convergence of
which was proved in [13] (this method is also used
e.g. in [14], [15]).

It turns out that this most probable set{yin} coin-
cides with the minimum of the weighted Kullback
entropy.

3. In the third step the connection between the
elements and their genes is recovered and the
fitness composition of individual genes is derived.
Here a similar idea as in the previous step is used.
This time two partitions of the elements in an
individual risk classR(i) are considered – on the
one hand the distribution into gene risk subsets
(see equation (2)), and on the other hand the
most probable solution of the previous step: the
expected number of elementsyin in each fitness
class in risk classR(i). The most probable fitness
composition of all gene risk subsets is determined.

As in the previous step, this solution is indepen-
dent of the initial state and allows to look for
the most probable composition{g∗ijn}. The most
probable solution this time turns out to be a shifted
uniform distribution, where the shift is given by
the maximum of the Shannon measure under the
implicit constraints.

From here, the fitness composition of each gene,
which is a disjoint union of its gene risk subsets
(see (1)) is derived.

These three steps present a model which is a theoretical
tool that enables to find the fitness compositions of
individual genes. In the following section a brief
description of a program which allows to experiment
using this theory.

4 Simulation of genomes in the equilib-
rium

The experimental part of this work consists of simula-
tions of different compositions of genomes in the equi-
librium and the calculations of the fitness compositions
of individual genes. The simulation is based on the the-
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oretical model, the idea of which is described in the for-
mer sections.

4.1 Some Notation

Let N be the number of deleterious fitness classes for
elements. The local fitness in classn is

sn = e∆n, n = 0, 1, . . . , N ;

where∆ or more intuitively,e−∆ is a parameter that
can be chosen later. The genome consists of|M| ele-
ments each of which can be in one of theN + 1 fitness
classes. The elements contribute multiplicatively to the
fitness class of the genome. Since

sn1
∗ sn2

= e∆n1+∆n2 = e∆(n1+n2),

the fitness of the whole genome can only be one of the
following:

sn = e∆n, n = 0, 1, . . . , N ∗ |M|;

in particular, the worst fitness for the genome issN∗|M|,
this is the case, where all the|M| elements lie in the
worst fitness classN .

A genome is represented by a vector~y = (y1, . . . , yN),
whereyn is the number of deleterious elements which
have fitnesssn, i.e., the number of elements, which are
in fitness classn. Given such a vector, the fitness of the
genome is immediately found:

sgenome = e1∆·y1e2∆·y2 · · · eN∆·yN =

= e∆(y1+2y2+···+NyN ) = s(y1+2y2+···+NyN ).

It is necessary for further analysis to find the probability
for the whole genome and for individual genes to be
in a certain fitness class. So, as the first step towards
this goal for each number (potential fitness class of the
genome or gene) all the possible sum representations of
the type(y1 +2y2+ · · ·+NyN) have to be determined.
The algorithm which finds all these representations for
a part of or the whole genome is described in the next
section.

4.2 Determine for all numbers the possible repre-
sentations as sums

In this section the recursive algorithm to find all the pos-
sible representations of any numbern > N in the form
y1 + 2y2 + · · · + NyN is described.
Let the set of the vectors(y1, y2, . . . , yN ) which sat-
isfy y1 +2y2 + · · ·+NyN = n be denoted byΘn. The
main observation which is necessary for the recursion is
the following: The setΘn can be determined if all the
representationsΘn−1, Θn−2, . . . ,Θn−N are known. In
fact, for large enoughn, the setΘn of representations
is constructed as follows:

1. Initially Θn is empty.

2. From the setΘn−1, all the vectors are chosen, the
numbery1 is substituted byy1 + 1, and the result-
ing vectors are added toΘn.

3. From the setΘn−2, those vectors which havey1 =
0 are chosen,y2 is increased by one, and the vec-
tors are added toΘn.

Note, that only those vectors withy1 = 0 have to
be taken into account, as those withy1 6= 0 are
already present from the setΘn−1.

4. From the setΘn−k for 2 < k ≤ N , those vectors
which havey1, . . . , yk−1 = 0 are chosen,yk is
increased by one, and the vectors are added toΘn.

Using this recursion, a dynamic programming algo-
rithm is easily derived. The first setsΘ1, . . . ,ΘN

are constructed by hand. Then, recursively, the sets
for N + 1, N + 2, . . . , in this order are constructed,
using the recursion above. In that way, the necessary
N predecessor sets are always present for each new
construction.

Now for any genome fitness class, all the possible
vectors (y1, y2, . . . , yN ) are known, in other words,
for any desired fitness for a genome, all possible
combinations of numbers of elements in fitness classes
are known. Note, that the number of elements in the
best fitness class0 is given by|M| −

∑
n yn.

In the next section the setsΘn are used to determine
P (sn), the probability for a genome to have fitnesssn

for all n ≤ |M| ∗ N .

4.3 Determine the probability of a gene to have
some given fitness

In this section the concluding step of the algorithm is
shown: The probability for a genome to have fitness
sn, this isP (sn) in the present notation, is determined.
This is the sum of the probabilities of all the possible
combinations(y1, y2, . . . , yN ) in this fitness class.

The probability that a genome is given by a vector
(y1, y2, . . . , yN ) is equal to

P (~y) =
(
∑

n yn)!
∏

n αyn

n∏
n yn!

.

Hence, the probabilityP (sn) is given by

P (sn) =
∑

~y∈Θn

(
∑

n yn)!
∏

n αyn

n∏
n yn!

(4)

Since the setΘn is known (section 4.2), the probability
P (sn) is determined in a loop over the elements foΘn.

So far, the whole genome and its probability to belong
to a certain fitness class was considered. Now a similar
treatment is done for individual genes. Note, that the
sum representation (section 3) is used for genes as well
as for the whole genome.

4.4 Fitness distribution for individual genes

In the previous section the probability was found for a
genome to lie in a certain fitness class. In equation (4)
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the steady state parametersαn are necessary for this.
For individual genes the expected number of elements
in different fitness classes is not part of the description
in the steady state (after the anonymous fitness dynam-
ics), because the genes are not considered yet. How-
ever, after the two steps of post-selectional dynamics
the limit fitness composition is given as follows: The
distribution,P (i)

j (X0, X1, . . . , XN) of the subsetG(i)
j

into fitness classes is a polynomial distribution with the
probability parameters

pijn =
g∗ijn

|G
(i)
j |

, n = 0, . . . , N.

A gene is the disjoint union of its risk gene subsets,
hence, the distribution of the geneGj is also polyno-
mial,Pj(X0, X1, X2, . . . , XN ), and the parameters are

pjn = (
∑

i

g∗ijn)/|Gj|.

These parameters play the same role for the gene as
the αn for the whole genome. However, there is a
slight difference, as for the genome, theαn are for
n = 1, 2, . . . , N , while for risk gene subsets and genes
the fitness classn = 0 is also included.
For any vector~y = (y0, y1, y2, . . . , yN ) the probability
is given by

P (~y) =
|Gj |!

∏
n pyn

jn∏
n yn!

.

The probability for a gene to belong to fitness classn is

P (sn) =
∑

~y∈Θn

|Gj |!
∏

n pyn

jn∏
n yn!

. (5)

This is calculated using the sum presentation from sec-
tion 4.2 for each potential fitness classn.
The probabilitiesP (sn) for large n are very small.
Hence, as a timesaving approximation the highest num-
bern∗ is determined such that the sum of allP (sn) for
n = 0, 1, . . . n∗ is > 0.9999. TheP (sn) is set to0 for
n > n∗.

4.5 Summary and Input/Output of the fitness com-
position program

So far it is possible for example to submit a genome
with a risk structure, and genes to the program, and the
result will be the most probable fitness composition of
each gene. In this section the description of the nec-
essary input parameters and possible output values is
given.
The global necessary input parameters are:

1. Probability for an element to mutate,u.

2. Number of Genes,J and their lengths (how many
elements does each gene have). In particular, this
yields the number of elements|M| in the genome,
this is the sum of the lengths of all genes.

3. Number of risk classes,I.

4. Number of element fitness classes,N .

5. Fitness stepe−∆, the fitness in fitness class 1, the
local fitnesses in the other classes are determined
from it (e−n∆ in classn).

In addition, the risk structure has to be chosen. This is
done by

6. Defining each risk classR(i) by the associated
vectorΓi = (γi0, . . . , γin, . . . , γiN ).

7. Determine for each gene, how many elements lie
in which risk class, i.e., the size of the risk gene
subsetsG(i)

j for all i, j has to be entered.

The program determines according to the formulae in
the steady state after the anonymous dynamics the fol-
lowing parameters:

1. The expected vector(α1, . . . , αN );

2. The probability distribution of the number of dele-
terious elements, in particular its meanµ.

3. From there the expected sizes of the fitness classes,
An for n = 0, . . . , N.

4. Using the balancing method twice, and using the
An the program calculates the most probable fit-
ness composition for each gene risk subsetG

(i)
j ,

which is given by the parametersg∗ijn.

5. Using the fitness composition of gene risk sub-
sets, the expected numbers of elements in fitness
classes,pjn, n = 0, 1, . . . , N in individual genes
is determined.

6. With the parameterspjn for all genes and using the
setsΘn, as described in section 3, for each gene
a file containing the probabilities of allP (sn) is
constructed. The highestn is the last one, which
is necessary, such that the sum of allP (sn) is ≥
0.9999.

When running the simulations different aspects can
be observed. For example, and not surprisingly, the
increase of the mutation rateu. reduces the local fitness
of the genes in the steady state.

There are different possibilities to observe A change of
the risk structure of a single gene and its influence on
the steady state fitness of the other unchanged genes.
The effect depends on the choice of the risk structure
before and after the change in the chosen gene as fol-
lows. At first the gene consisted of elements, most of
which were in a good risk class, i.e., the probability to
mutate into a good fitness class was high. With a change
of the majority of its elements into a bad risk class
(most mutations lead the gene’s elements into bad fit-
ness classes), the gene’s fitness obviously was reduced,
but the fitness of all the other genes was increased.
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5 Outlook
In this paper the theory that allows to find fitness com-
positions of individual genes is outlined. The major
novelty in this approach is the global view, that con-
siders a genome as a set of finitely many elements. At
first the connection between elements and genes is ig-
nored, only in the equilibrium it is re-established and
leads to the expected fitness composition of individual
genes.
The simulation part of the work allows to observe in
particular the influence of changes in individual genes
on the other genes in the genome. For now these
changes are done only in terms of the local fitness con-
tribution of the genes. However, the next level of identi-
fying genes using this theory is to introduce alleles and
to find allele frequencies of individual genes using their
fitness compositions. With this extended model, it will
also be possible to observe not only the changes in fit-
ness but also in allele frequencies. This extended model
is work in progress of the author at the moment.
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