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Abstract

This paper presents an algorithm for computing Dedekind syfiga;, . .., a,)) by using the
Euclidean algorithm and algebraic propertiespfln Theorem 2.2 an explicit relation between

a polynomiala with rational coefficients, which is obtained by the Euclidean algorithm, and
09, 01,-..,0,._1 Will be determined. The main advantage of the algorithm is that by knowing

all o; can be calculated simultaneously. When. . . , a,, are relatively prime te, the algorithm

can be putin a particularly simple and compact form. Several examples are explicitly computed
by usingMathematica.

Definition 0.1 Fix positive integers anday, . . ., a,. The sumsr; are defined by

)

1 €

0; = — ) (1)

r gezl; (1—em)---(1—gm)
€% £1Vi=1,...n

wheree runs overrth roots of unity. It is obvious that; = o,,;. Therefore we only need to

considers; fori = 0,1,...,r — 1 and call it theith Dedekind sumIf we want to stress that
not allay,...,a, are relatively prime ta, theno; is called theith generalised Dedekind sum.
Whenay, .. ., a, are relatively prime te the above sum is taken over ath roots of unity. Let
= 11—t
A= 11—t and B = . 2
H (1—1%) — 0
Then by the Euclidean algorithm there exist polynomials € Q(¢) such that
B
1=aA _. 3
AT P A D) ®)

This way obtainedy is calledthe Inverse of [T, (1 — ¢*) modulo 2=t =1+ ¢+ -+~ + ¢,
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1 Introduction (i) Denote by>", &t an arbitrary multiple of the
H B
There is an abundant amount of literature on Dedekind ~ POlYnomial . Then

sums, appearing in many areas of mathematics such

as analytic number theory [5], topology [7], combi- 25‘ o =0 )
natorial geometry [10], algorithmic complexity [8] > ’

and singularity theory [11, 4]. Dedekind sums were !

among many others studied also by Berndt, Carlitz, . ,

Grosswald, Knuth, Rademacher and Zagier. Inarecent Since ;& ' = 0 for all ¢ € y, such that
book [2] on this topic, the authors Beck and Robins € # 1Vi =1,...,n. This follows directly from
connect the Dedekind sums to the ’'coin exchange the definitions of3 ando;. In particular, if applied
problem’ and also to the number of lattice points inside ~ on B then>_/_ o; = 0 always holds.

a certain polyhedra. From here the discrete volume and

the normal (or continuous) volume of polyhedra and o ) o
polytopes can be computed. We proceed by giving an alternative description of the

Inverse functiorw. For alle € pu,. define

if e £1Vi=1,...,n

relations among Dedekind sums that would simplify4_— i 15
if € =1 for some;.

their computation [1]. The existing methods for
evaluating such sums affactorisation multisection
and third most powerful method pértial fractions[6].  The expressioni. can be written as a polynomial in
with coefficients inQ. Moreover, in the proof of The-
orem 2.2 a polynomiaP(t) will be constructed such

Recent research is focused on finding properties and { 1
(1—e91)---(1—gan)?
0

)

The main objective of this paper is to describe an a

gorithm for computing Dedekind sums using the Eu:{hat

clidean algorithm. The Sequential arithmetic time and P(e)=A. forall ¢e€ pu,.

Parallel arithmetic complexity of the Euclidean algo-

rithm are well understood [3]. In practice the fastopserve that whenevef: £ 1 foralli = 1,...,nalso

Fourier transform (FFT) algorithm is used.

. a(e) = A, = P(e) holds by (3).

2 The main theorem €)= 4. = Ple)

In this section we will relate thénverse function to  For example, when is prime one can simply substitute
Dedekind sums More precisely, we will find an equal- ¢ with ¢ in the polynomial expression of. to obtaina.
ity connecting the polynomials

— Theorem 2.2 Fix positive integers and a a
i . 1 1yee.yn.
a and Zarﬂt . ™) The Inverse of [/, (1 — t*) moduloL=t" denoted by
1=0
«a equals

Remark 2.1 Running the Euclidean algorithm ) .
on a computer givesa supported on monomials >i_o or—it" modulo the polynomial
1,t,...,tr—2-deghcf(A.B) Note also thaty with such Lt tt7 7!

support is unique. hef (TT7, (1=t%4), 1447 1)

We begin with two obvious equalities among Dedekind )
sums: PrROOF From now on fix a generataer € u,. and de-

note the polynomial

(i)

r—1
o; - > At (6)
j=1
lz ag a Ei a =
roeCun et AL (1=et)(1-etn) by p(t). Then
1 i _
r Zseur,g“i#l (175fa1)6...(17€*an) - pg(); _ 07
ni ay+-tan—i . p(l) = roo,
(D"F Xeep, i Toemymi—em) =
(—1)n0a1+...+a7171‘ p(El) = Toy,
and p(ET_l) = TOp-1.
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The above formulae can be considered as a linear sy8- The computing algorithm

tem ofr equations ind.; and variable

1 1 1 1 0
1 e g2 gr1 Ac
1 2 4 £2(r—1) Ag2
et AV
o0

g1

—r| 02

Or—1

Since the Vandermonde matrix is invertible, we cal

solve the system and obtain

As’“ Z::() JiEk(T 2
r—1 ki
i Or—i€

Moreover, by (ii)

for k=12...r—1.

r—1 r—1
A1:A50:E UZZE o—;i =0
=0 =0

This proves that for alb € p,. the polynomial

r—1
P(t)=> o,
=0

evaluated irr equalsA.. Since we are working over al-
gebraically closed, our polynomialP(t) is uniquely
determined by it$ values and suppott ¢, ..., ¢t L.

(7)

On the other hand recall that for all
e €p, suchthate® £1Vi=1,...,n

the Inverse functiorn(e) equalsA. = P(e). This

means that

a(t) = P(t)

EChr (t - 6)
et #£1Vi=1,...,n

V(1

1—t"
1—¢t

(1—tei), = t’)

’y(t) hcf(

for some polynomialy with rational coefficients of de-
greehcf (H L (=) L ) In other words

1—t"
1-t

hcf(n (1 —te) 11%;)

O

a(t) = P(t) modulo

ISBN 978-3-901608-32-2

The Euclidean algorithm and Theorem 2.2 will be used
to calculater; (£ (a1, ...,a,)) fori =0,1,...,r — 1.

We will split the descrlpt|on of our method |nto three
steps. As before denote

A=]Ja

i=1

1-—¢

and B = .
1—1t

_ tai)

Step I) Run the Euclidean algorithm on

A and to obtainc.

B
het (A, B)

r§tep II) Recall that by Remark 2.1 thus obtained poly-

nomial a(t) is spanned on, ¢, ...t —2~deghcf(4,5)

By Theorem 2.2 there eX|sts a unlque polynomial
~(t) € Q(t) of degreehcf (A, B) such that

Zo'r Lt +7

B

h hef (A, B) ®)
Lemma 3.1 Equalities (i) and (ii) uniquely determine
Y.

PrROOF Write

r—1
=> a;t'. 9)
=0
For the sake of simpler notation we will restrict the
proof to hef (A, B) = 1 which holds if and only if
ai,...,a, are relatively prime to-. In this casey is
a constant. The general case can be proved in the same
way by using equalities (i) and (ii) and comparing the
coefficients in (8).

We will separate cases farodd or even.

When n is odd compare the coefficients &t and

tr—aitFantijn (8), where denotes the smallest
nonnegative residue mod Recall from (i) that

i = (—=1)"0ay 4 tan—i- (10)
Thereforen; — v = o,_; equals
—Oq 4 dan—rti = — (O‘Pm =)
From this
1
v=5 (@te g (11)

for any and thus forall =0,...,r — 1.

Whenn is even we use equality (ii) to determine

r—1 r—1
E Q — 1y = E 0; =0
i=0 i=0
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implies

(12)

1 r—1
Y= ; ZO&Z'.
=0
]

Step Ill) By (8) the:th coefficient of the above obtained
polynomialo — 'yﬁ is exactlyo, _;.

4 Examples

In the following examples it will be shown how to use
Mathematica to compute the polynomials: and
~. In this way all Dedekind sums; are calculated
simultaneously.

Load the standard package
<< Algebra‘PolynomialExtended GCD".

Example 4.1 We start with examples whetg, . . .
are relatively prime to.

y A

€
23
In step I)a andg3 are calculated by

°0i(=5(4,5,12)) :

In[1] := PolynomialExtendedGCD]
(1 —t4)(1 —t5)(1 — t12),
PolynomialQuotient[1 — t23 1 — ¢, t]]
2 3 4 5
Dut[]_] — {1,{_£_3J_L_6i_2i+47t
_~_ﬁ _6t" 1%31;8 Qgt” 2_3 111:1%3_ 339 . 3%’?3
5t1%3 939 Gt%:é 7t%§ 11'3?'9 102{3o 4%%1
23~ 23 23 23 23 _ 23 =~ 237
28 25t 2t° 4 5t0  9t'  9¢’ | 3t° | 8tl
23 23 23 123 23 23 23 23,
4 6¢° 267 2t 2t! " 26t 4t 4t
23 1523 gf? 2%7 123 192:3 2023
_3e® L e 11t ¥ st 4t 1}
23 23 23 23 23 23 JJ-

In step Il)~ is calculated using (3) since = 3 is odd.
Thus

1
— (0&0 —|-042) =

1
v = ) (0‘0 +0¢237m) )

~o3

In step 11l) we obtairo; as the coefficient a3~ in

In[2] := o — vPolynomialQuotient|
11231 —t,t]
L 2 21t 3t8 t* 7t° 8t
Out[2].— _§+7§_8273+¥73+§+T§1
_37‘3_107‘34_&_'_52'0 _82‘3
ﬁg_ ﬁt ﬁ 1037 + ﬁ
23 238 tlS 237 1:20 2321 3%%2
T 23 7 23 23 23 ¢
It is easy to verify that
09 = —021, 022 = —022 =0,...

as expected.
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1

4,5,5,7,10,14)) :
33(77a> ) ))

oai(

Step 1) computes by

In[1]: PolynomialExtendedGCD|
(1~ t4)(1 — 6)2(1 — £7)(1 - £10)(1  t14),
PolynomialQuotient[1 — t33 1 — ¢, t]]

2 3 4
Out[t] i= {1, {42+ %05 4 32 4 5oty 1
a7+¢® 1135 t° 30t 15t 541+t° 10
toa ey T + FY! + 297, +4t16
441t 4 BALt 1561 30t | 1136% 47t
17 297 . T I 297 11,
4787 4 568t 37t 40t | 113t 29t
11 297, 11, 11 27 11,
41054t | 41t® 4 40t® 161t 40t
297 11 1 297 11
LA 1034; 29; ,
7@7134t+i+.”_ 53@%_271#% _291:4}}}
27 297 11 297 297 11 :

In step Il)~y is calculated using (4) sinee= 6 is even.
Thus

31
1 1 2431 221
TS 2 T e s

Step 1) yieldso; as the coefficient a3~ in

In[2] := a — vy PolynomialQuotient]
11331 —t,t]
118 | 809t 566 t> 727 t° 1864 t*
Out[2] ;= X2+ + - -
81 891 89 891 891
+1376t5 + 974t® i _ 1216t® _ 808t®
891 891 891~ 891 891,
103t 103t gogt!? _ 1216t ™t
81 1 8 891 89
+974t15 + 1376t1§ B 1864t?717 727t1§ 566t1%
ECTR 1o, 89 891 _ 891,
809t 118+t 221t 82t 731t
t 501 T - S 891
4890 t%% 809t%% . 2914t127 809 t°
891 891 891 891
+890t29 4+ 131 £ 82t 221
891 891 891 81 °

Example 4.2 In the following examples we con-
sider two generalised Dedekind sums, where not all
ai,...,a, are relatively prime te. In this casey(t) is

a polynomial of degre&cf (A, B) which will be com-
puted by generalising the proof of Lemma 3.1.

1
In this caseéhcf (A, B) = (1 +t)(1 4+t + t?). Thusin
step )« is obtained by running the Euclidean algorithm
on

In[1] :

Om(

PolynomialExtendedGCD|
(1—t)(1— £2)(1— %),
PolynomialQuotient|

112, (1 —t) (1 +t)(1 +t +t2),¢]]

- 7 .56t 2 | tt t® £t 11t7
Out[l] '_{1’{54_5_?4—?4—7_?_‘_ 12 0
947t 1182 4t ﬁJr 111:5}}

12 12 12 3 3 12 .

In step 1) we determine = vy + Y1t + y2t? + y3t3.
From (i) it follows

01 = —05 09 — —04
07 = —011 08 = —010

0'3:—0'3:0 0'9:—0'9:0.

Opg = —0¢

Copyright © 2007 EUROSIM / SLOSIM



Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic) 9-13 Sept. 2007, Ljubljana, Slovenia

Moreover, (ii) and Since

1—¢"
(1—t) A +t)(1 +t+12)

11

i
E 12—t
i=0

=1—t4+t2 4+t -7 418

) equals
imply
1— t12
00 =01+ 03+ 06— 07 +05=0. T A HA A+ A+ t+ )
By comparing the coefficients in we get
11
; 1—¢"? 00 =—15 — 0
_;t" and o — 12
;U” ' T U )a+nI+t+ ) on=—g+%-mn
olo=7+mMm—"7
the above translates into the following system of equa- 09 = —% —Y t72 =73
tions 08§ =—75 — M+ — 7
- 1 1 U7=%+70—72+74—’Ys
—13 — =3+ TN TMm= o6 ="+ —1+%
05 = —71+72 — V4
—Yot+7n—7r2=r2-—"3 —-Nnt+tr-—73=0 04 = —Yo 473 — V5
03 = =73+ M4
and 02 = —Y1+7s
7 1 1 1 o1 = —7s.
BT R ClatC Rttt C it [ u R a7t +v3=0. _
Recall that by (i)
Its solution is )
0; = 01424344—i = 010—i holds fori = 0,1,...,11.
1t 112 7
Y=ot T o T Next apply (i) on the following multiples Oflcf(BTB):

B _ 1—¢12
hef(A,B) — (1—t)(1+8) (1+£2) (1+t+£2)
=1—t+t3—t> 419,

In step 11I) we obtairy; as the coefficient at2—? in

In[2] := a — v PolynomialQuotient|

1-t12 (1 —t)(1+t)(1+t+t2),t
( )( )( ) ] hcf(i7B)(1+t+t2):1+t4+t87

Out[2] := _1_ st g2 et st xf
R AT S o~ s (L + 1)
20 T 6 "6 24 :

_ B

= rerti (1 +t+12+13)
] =1+t3 416 19
oai(ﬁ(l,2,3,4)):

and B.
In this case
Therefore
hef (A,B) = (1+t)(1+)(1+t+1t%)
09— 01+ 03 —05+06 =0,
= (1+t+) A +t+12+13). o0+ 04+ 08 =0,

oo+ 03+ 06+ 09 =0,
Step I) calculates by running the Euclidean algorithm S0 =0.
on

. The system of the above equations has a unique solution
In[1] := PolynomialExtendedGCD]

(1-t)(1—t2)(1 —t3)(1 - t),
PolynomialQuotient| Y= T or T + i + =+ =
1— 2 (1 —t)(1+6)(1 + t2)(1 + t + t2), t]] 7 36 18 8 T
Finally, in step Ill) we obtainy; as the coefficient at

2 3 4 5 12_ .
Outft] :={t{-5H-G+5-H-%+% ¢ N
19 4 13t L &7 567 5t ot . .
T T M In[2] := a—~vPolynomialQuotient|
+5 % % — ) 1t (1 —t)(1+t)(1+t2)(1+t+1t2),¢]
In step Il) we determine — 5 _ 5 512 _ 74° 4 5t
p i) Out[2] := —sﬁ——g—é%—?g—g—ﬁ%%
— 2 3 4 5 A S A JAY R A ST K M W -
Y = + Y1t + Y2t + y3t” + yal” + Y5t 72 36 72 72 36 72
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