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Abstract

In the field of Metabolic Engineering and Systems Biology, a plenitude of model-
ing and simulation tools have recently emerged that aim to shed light on processes
in living cells. 13C Metabolic Flux Analysis (13C-MFA) is an evolved, model-
based approach for the quantification of intracellular fluxes, the key functional
output of metabolism. To increase flexibility in 13C-MFA application design, the
automation of repetitive tasks and the management of computational resources
based on a scientific workflow framework entails many advantages.
In this contribution, we present two important aspects regarding the integration
of 13C-MFA applications into a generic Scientific Workflow System (SWS). The
first aspect addresses the unification of the various data formats involved in a typ-
ical 13C-MFA application, namely experimental data, models, model parameters
and simulation results. Secondly, existing simulation tools need to be extended
by a web service interface to make workflow orchestration possible. Hence, by
making use of service-orientation, SWS technology offers many benefits for 13C-
MFA as a major tool for Metabolic Engineering.
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1 Introduction

In recent years, Metabolic Flux Analysis with13C-
labeling experiments (13C-MFA) gained more and
more interest as a model-based diagnosis tool in the
field of Metabolic Engineering and Systems Biology
[1]. It is currently the most powerful and widely ap-
plied method that allows quantification of intracellular
conversion rates, so called metabolic fluxes.

To estimate model parameters,in-vivoandin-silico data
have to be compared. The general procedure of 13C-
MFA is depicted in Fig. 1. In a carbon labeling exper-
iment, living cells are fed with specifically13C-labeled
substrates. Labeling patterns in diverse metabolites are
detected with highly sensitive mass spectrometry de-
vices. In order to determine the not directly observable
in-vivo fluxes, the real experiment is modeledin-silico
based on initially guessed fluxes. By systematic rear-
rangement of the assumed fluxes, the real flux distribu-
tion is estimated by fitting the simulated data to the real
ones, i.e. by minimizing their difference (parameter fit-
ting process).

Fig. 1 The general principle of 13C-MFA [2]. Defini-
tion of interfaces between raw and simulated data, mod-
els, model parameters is required.

Although the overall procedure is conceptually simple,
the mathematical core problem of 13C-MFA consists
of the solution of a nonlinear inverse problem. This
inverse problem is high-dimensional, and depending
on the experimental data, not necessarily well-posed.
As a result, determination of fluxes from labeling ex-
periments requires a concatenation of many processing
steps that are tightly interwoven and computationally
demanding. Although high-performance algorithms for
13C-MFA have been developed recently [3], setting up
a workflow-based 13C-MFA framework is far from be-
ing a standard procedure.

Typical 13C-MFA applications are the simulation of
a carbon labeling experiment (fwdsim), the parameter
fitting process (fitfluxes), or making use of criteria for
statistical evaluation of flux estimations (MCstat). All
these applications are composed of autonomous soft-
ware tools that run on distributed computational re-
sources. However, because simulation tools are of-
ten tightly integrated into each other with respect to
their input and output behavior, data exchange and
conversion make up a considerable amount of imple-
mentation work within large-scale 13C-MFA applica-
tions. In a modular 13C-MFA simulation framework,
the generalization of data formats, and software reuse
by decoupling program interfaces can drastically re-

duce the design complexity of such large-scale applica-
tions. In contrast to the majority of classical bioinfor-
matics tasks, computer-based evaluation procedures in
the field of 13C-MFA are highly diverse, mainly com-
putationally intensive and only partly routine. Since
13C-MFA is a model-based approach, scientific work-
flows in this domain are not data-driven but control-
flow based [4].

In this paper, we investigate two aspects of 13C-MFA
application integration into a generic scientific work-
flow system in detail: (a) the unification of the vari-
ous data formats involved in a typical 13C-MFA appli-
cation, handling of experimental data, models, model
parameters and simulation results; (b) the extension of
existing simulation tools by a web service interface to
make workflow orchestration possible. Implementation
issues are discussed, and, finally, an example workflow
modeled by the proposed approach is presented.

The paper is organized as follows. In Section 2, the
principles of scientific workflows are introduced. The
design of 13C-MFA web services as components of
such workflows is presented in Section 3. Section 4 pro-
vides details on the implementation of our approach. In
Section 5, the developed framework is used to formu-
late a typical example in the field of nonlinear statis-
tical evaluation, i.e. the Monte Carlo bootstrap proce-
dure. Monte Carlo methods are easily parallelizable on
a heterogeneous cluster infrastructure. Hence, this is
a paramount example for distributed computing. Sec-
tion 6 concludes the paper and outlines areas for future
research.

2 Scientific Workflows

The workflow paradigm allows us to flexibly create
generic workflows using library methods that are en-
capsulated in LEGOTM-like building blocks. These
building blocks can be arranged in a comfortable way
that relieves the scientist from the need to learn techni-
cal or implementation details. The single blocks are
connected via communication links to enable in be-
tween data exchange.

In particular, the motivation to implement aScientific
Workflow System(SWS) as a generic workflow frame-
work for the 13C-MFA domain is driven by the follow-
ing objectives:

• Workflow Automation : many frequently recur-
ring (sub-)activities in 13C-MFA studies can be
performed in an automated manner. Scientific
workflows are employed to accomplish this task
adequately.

• Data Organization: experimental data, models,
parameters, simulation results, and literature in-
formation are to be organized centrally and made
accessible via a web interface.

• Service-Oriented Architecture (SOA): using a
SOA design, workflows are used to create 13C-
MFA applications from service compositions, i.e.



they translate associated applications into the
Software-as-a-Service (SaaS) domain. Web ser-
vices, the main building blocks of a SOA, are soft-
ware systems designed to support interoperable
machine-to-machine interaction over a network.

• Distributed Computing : service compositions
may extend across platforms and virtual organiza-
tions. Computational resources are assigned au-
tomatically to requested computation tasks instead
of being selected manually. Interoperability, scala-
bility and reliability are topics of current research.

In a SOA environment, web services are regarded as
components of business processes. A workflow is de-
fined by the automation, as a whole or in parts, of its
business processes [5]. Thus, the aggregation of web
services to large-scale applications often entails a high
automation potential. Within SOA applications, loosely
coupled services usually communicate through Internet
protocols for so-calledprogramming in the largework-
flow applications [6].

In the context of workflows, the attributescientificem-
phasizes the altered needs of workflow applications in
the research domain [5]. In particular, scientific ap-
plications are usually long-running computational tasks
that in general cannot be handled by traditional SOA
mechanisms.

Usually, web services are called synchronously. Thus,
long-running applications might yield a communication
timeout. To prevent such events, the communication
has to be performed in an asynchronous manner. In
general, this is implemented by immediately returning
a unique job handle. Passing this handle to subsequent
calls of the original web service allows the access to in-
termediary results. Because a web service can be called
by multiple clients, asynchronous communication re-
quires to distinguish different sessions of an applica-
tion.

Long-running services are addressed by theWeb Ser-
vices Resource Framework(WSRF, [7]). WSRF ser-
vices (or Grid Services for short) are modeled using
a factory pattern, i.e., they have an explicit life-cycle
management. This management is achieved by the use
of web service operations that allow the instantiation
and destruction of so-calledresources(an instance of a
service). Typically, a scientific application consists of
several components. In the context of scientific work-
flows, a workflow is composed of several web services
and Grid Services, respectively. Henceforth, web ser-
vices and Grid Services are used synonymously in this
contribution.

3 Service Workflows for 13C-MFA
An elaborate investigation of the monolithic 13C-MFA
application architecture revealed about 20 independent
programs. These are formulated as encapsulated black-
box systems with a specified data input (for example,
a metabolic network model) and an output (i.e. sim-
ulation results), and arranged in a hierarchical man-

Fig. 2 Example data flow scheme: typical applications
in 13C-MFA need to exchange various data files. While
a user only needs to care about input (hereFML) and
output (HDF5), the whole workflow usually consists of
several programs (app1, app2, . . . ,app5) each with spe-
cific input/output semantics.

ner. Within the black-boxes, individual programs are
arranged in serial or parallel fashion. These programs
communicate with each other by various input and out-
put formats (see Fig. 2).

In order to make 13C-MFA applications workflow-
capable, we follow two major design principles:

1. 13C-MFA programs have to be compatible to each
other with respect to their input and output data
formats.

2. Each 13C-MFA software tool has to be repre-
sented as a web service.

The first aspect is achieved by adapting 13C-MFA pro-
grams to restrict the use of data formats based on XML
and HDF5. Secondly, 13C-MFA programs are wrapped
by a web service layer utilizing the LCDL framework.
A workflow orchestration engine for the automation
and high-performance provisioning of 13C-MFA web
services is briefly presented at the end of this section.

3.1 Interconnecting 13C-MFA Programs

Reducing the total number of employed formats signif-
icantly reduces the overall complexity of workflow ap-
plications. For example, transfer and conversion pro-
cesses between the different formats are minimized.
This, in turn, also eliminates potential sources of errors.

Three data formats are used in the 13C-MFA simulation
toolbox:

1. Metabolic network models are represented in the
XML format FluxML, or FML for short [8]. This
format contains information about stoichiometry,
metabolic network structure, measurement speci-
fications and initial flux values.

2. Results from simulation and parameter estimation
are stored in another XML format calledFWD-
SIM. This document format includes estimated
flux parameters and application run-time informa-
tion, but also configuration parameters of solvers
and optimizers used.

3. Bulk matrices of floating point data, such as ex-
perimental and simulated measurement data, sys-
tem states or sensitivity information, are stored in



a HDF5-based file format [9]. These files are uti-
lized, for example, whenever values from multiple
FWDSIM documents need to be aggregated in a
single file for further analysis in third-party tools
such as MATLABTM .

3.2 Web Service Interfaces for 13C-MFA Tools

The Java framework LCDL (Legacy Code Description
Language) provides an universal program wrapper [10].
Here, command line arguments of each single 13C-
MFA tool are represented as arguments for a web ser-
vice call. Being console- and file-oriented, extending
13C-MFA applications by web service functionality is
easily achieved using the LCDL framework:

• Standard output streams (stdout) and standard er-
ror streams (stderr) are redirected into distinct
files. All data is accessible by further web service
requests tostdout, stderr or any other file gener-
ated from the web service. This is especially fa-
vorable for debugging and analysis purposes.

• An XML-based legacy code description language
allows the definition of custom types for wrapped
web services. In the 13C-MFA environment, this
is a valuable feature, because workflow applica-
tions are constrained by their input/output seman-
tics. For example, although many 13C-MFA pro-
grams haveFML or FWDSIMfile arguments, both
XML formats have entirely different meanings,
and, must not be mixed up. Thus, additional con-
straints prevent semantic errors in a SOA frame-
work.

• A plug-in mechanism allows extensions to the
LCDL framework, e.g, to support new message
transport types such as Flex-SwA [11]. This mid-
dleware is responsible for the opaque transfer of
data between subsequent web service calls, i.e.
files are exchanged between 13C-MFA programs.

For the SOA integration of 13C-MFA tools, neither the
learning nor the use of a different framework or lan-
guage is necessary. The LCDL framework is realized
as an Eclipse Rich Client Platform and utilizes sev-
eral mechanisms provided by this platform, like plug-
in mechanisms (using OSGi techniques) and basic edi-
tor for the LCDL model based on the Eclipse Modeling
Framework.

Using LCDL for the service wrapping of existing 13C-
MFA tools, and Flex-SwA for opaque file exchange
between those web services, a solution for 13C-MFA
workflow orchestration is required.

3.3 Workflow Orchestration with BPEL

With the availability of 13C-MFA tools in a SOA, the
web services need to be organized and provisioned
in an appropriate manner. Specifically, the model-
ing of workflows with 13C-MFA simulation tasks, and
the Grid-deployment of computationally intensive jobs
must be possible.

In recent years, theBusiness Process Execution Lan-
guage(BPEL) has gained interest within the scientific
community [12, 13], since it is – in contrast to the ma-
jority of DAG-based (directed acyclic graph) workflow
languages – a Turing-complete, general-purpose work-
flow modeling language. In the area of scientific com-
puting, BPEL offers a number of advantages:

• In addition to a rich vocabulary and control mech-
anisms to express sequences of activities likere-
ceive, invokeandreply, BPEL allows parallel ex-
ecution, loops, error handling and compensation
mechanisms to perform roll-back actions.

• BPEL is an official OASIS standard, widely used
with industrial-strength tool support [14]. These
tools seamlessly integrate into service-oriented
and Grid-computing architectures.

• Workflows in BPEL are exposed as web services
and, thus, fit naturally into a SOA. This feature
supports programming in the large and interface-
oriented design of complex applications.

With these properties, the integration of scientific
workflow applications into a distributed workflow and
Grid environment is considerably eased, and originally
tightly-integrated 13C-MFA simulation tools are de-
coupled using web service interfaces.ActiveBPEL, an
open source BPEL language execution engine, is cho-
sen for the composition and orchestration of 13C-MFA
scientific workflow applications [15].

4 Implementation Issues
4.1 Data Formats in 13C-MFA Applications

Applications in the 13C-MFA toolbox are written in
various programming languages, such as C++, Java,
Python or MATLABTM . The implementation of the
data formats and exchange interfaces presented in the
previous section mainly base on the following subjects:

1. The Xerces-C library is used to parse and stream
XML files for FluxML and FWDSIM formats in
C++. In Java, Python and MATLABTM the lan-
guage intrinsic libraries are utilized for XML pro-
cessing.XML Schemadefinitions for both data for-
mats exist, thus providing validity checks on each
13C-MFA program execution.

2. HDF5 is implemented in C++ and Java using the
reference library [9]. In Python, theh5py li-
brary is used for HDF5 processing [16], while
MATLAB TMships with built-in HDF5 support. An
internal interface allows the conversion to and
from HDF5 of any matrix or vector data used
within the 13C-MFA programs.

As a viable alternative to HDF5, the netCDF format was
also considered [17]. However, as netCDF in the cur-
rent version 4 internally uses HDF5, the latter was cho-
sen due to the generality and widespread support in the
scientific community.



4.2 Web Service Extension

Extending the diversity of 13C-MFA programs with a
web service layer one by one is an error-prone proce-
dure. The LCDL framework is used for the automatic
generation of Java wrappers from native code, i.e. from
binary executables or libraries. Each LCDL-generated
web service is represented by a specification containing
various information about input arguments:

- name: string identifier of the input argument.

- type: XML Schema data type, e.g.stringor int.

- mode: flag indicating a parameter that is read-only
(in), read-write (out), or both (in-out).

Additional specifications contain information whether
an argument is optional, of type array etc. In the LCDL
specification, return values of the wrapped code consist
of two parts:

1. output target: the destination of the web service
output needs to be defined, i.e.stdout, stderr, a file
or an integer value are the available options.

2. output semantics: the specification, how the web
service output is returned. For example, thefit-
fluxesprogram either returns an XML file contain-
ing flux estimations, or, depending on the parame-
terization, an integer value is returned. The seman-
tic definition of output parameters in the LCDL
code specification resolves such ambiguities.

As a generic framework for wrapping legacy code,
LCDL supports different types of emitted code, so-
calledbindings. Currently, Java and web service bind-
ings exist in LCDL. The emitted wrapper code is sub-
ject to restrictions, e.g. unlike Java, web service bind-
ings do not allow polymorphism. LCDL emits correct
code for the target binding. Because LCDL is utilized
for wrapping 13C-MFA programs by web services, the
emitted type has always a web service binding.

4.3 Distributed Computing

When deployed in a Grid environment, the execution
of a scientific workflow is automatically provisioned
onto computational resources [6]. With the availability
of 13C-MFA applications as web services, the mainte-
nance effort is drastically reduced in a multi-user en-
vironment. Hardware and software resources are man-
aged centrally for all users in the SOA.

The main ingredients for the flexible deployment of
13C-MFA applications into a distributed SOA are
made available with these deliberately selected techni-
cal components:

• Scientific workflow applications are 13C-MFA
programs wrapped by LCDL-generated web ser-
vices. These web services are deployed in web
service container, such as Apache Axis [18].

• Several extensions to the ActiveBPEL have been
developed, i.e. support for long-running workflow
applications via Grid service invocations, sup-
port for Grid Security Infrastructure, and an on-
demand provisioning component are now avail-
able [15, 19, 20].

Distributed computing and resource provisioning of
SOA services in a scientific workflow environment is
easily feasible with the available software tools [21].
Due to the presented 13C-MFA application infrastruc-
ture design, generic solutions, like ActiveBPEL, can be
utilized in the implementation of a scientific workflow
framework.

5 Sample 13C-MFA Application MCstat:
The Monte Carlo Bootstrap

The Monte Carlo bootstrap method is utilized whenever
parameters of nonlinear models are estimated with rela-
tively few measurements in order to assess the certainty
of the parameter estimates by calculating the measure-
ment error propagation [22].

In 13C-MFA, a large number of (artificial) measure-
ment data sets mimicking real data are generated by
variation of the experimental measurements according
to their standard deviations. For each artificial data set,
unknown fluxes are estimated by solving the nonlinear
inverse problem (parameter fitting). To address well-
known pitfalls of nonlinear optimization (i.e. local ver-
sus global), we selected a multi-start strategy in connec-
tion with a gradient-based optimization routine. Several
thousands or ten-thousands of Monte Carlo bootstrap
iterations are performed in this way, possibly in a par-
allelized fashion. Here, the determination of feasible
initial fluxes is a problem of its own that is described
elsewhere [8].

The implementation of the multi-start Monte Carlo
bootstrap applicationMCstatin the 13C-MFA environ-
ment is presented in Fig. 3. This application consists of
the following 13C-MFA programs:

1. perturb : n measurements are sampled according
to the measurement specification. The temporary
FluxML files P are generated fromfml.

2. mciv: a set ofm feasible initial flux values are
randomly sampled from the FluxML file in the
flux space. The results are stored in the temporary
HDF5 file F.

3. setfluxes: set thejth flux vector fromF in the per-
turbed model file (P).

4. fitfluxes: this step involves the numerical solution
of the nonlinear inverse problem utilizing param-
eter estimation of flux values with respect to the
measurements.

5. collectfitdata: finally, the FWDSIM files are
merged into a unified HDF5 file (R).



Fig. 3 Monte Carlo bootstrap application control flow
MCstat. The input parameters to this workflow are:
(1) fml: input FluxML model, (2)n: number of mea-
surement perturbations and (3)m: number of random
fluxes. This number of feasible initial flux values to
be generated depends on the size of the flux solution
space. Simulation results are then collected in a HDF5
file, namedR.

As shown in Fig. 3, the Monte Carlo application con-
sists of two nested loops iterating over the integer pa-
rametersn andm. In the outer loop, the input model
fml is perturbedn times andm initial flux distribu-
tions are generated. These initial flux vectors are then
iterated in the inner loop, and in totaln × m execu-
tions of thefitfluxesapplication are performed. Finally,
the estimated fluxes in the simulation files (fwd) are
merged into the HDF5 fileR. Intermediary resultsP ,
F andfwd are kept in case an error occurs. Thus, a
detailed workflow error analysis is possible.

The estimated flux results inR are processed further
by discarding obviously non-global optimization out-
comes. In the 13C-MFA, the remaining (valid) results
from the Monte Carlo bootstrap study are then ana-
lyzed in terms of statistical measures (1

st and2nd mo-
ments), and the a-posteriori probability distribution is
determined. Finally, these results are visualized, inter-
preted, incorporated into new models.

Monte Carlo bootstrap methods are generally embar-
rassingly parallel which implies that parallelization is
easy and the Monte Carlo workflow is expected to give
well-scalable results. In particular, the outer loop of the
MCstat workflow iterates overn perturbations of the
input model. Within each iteration, these models are
independent to each other. Except for the workflow in-
vocation and the final data merge step of Monte Carlo
results (collectfitdata), no communication is required.
Thus, the execution of the Monte Carlo bootstrap work-
flow in parallel is easily possible.

In terms of service-orientation,n andm are integer ar-
guments to the web service, the filesfml andR are
represented as string paths to file locations. Flex-SwA

Fig. 4 LCDL model of the Monte Carlo application

is utilized to perform the real transport of these files.
The LCDL definition of the Monte Carlo bootstrap ser-
vice is depicted in Fig. 4.

Exposing Monte Carlo bootstrap as a web service via
invocation of a workflow script allows scientists to eas-
ily use and adapt its functionality without the need of
compiling and installing any tool necessary to execute
it.

6 Conclusions

We have shown that the 13C-MFA software environ-
ment can be modeled by service workflows with little
effort. This step improves usability and flexibility of
the modeling, simulation and evaluation pipeline and
facilitates 13C-MFA for scientists without program-
ming experience. The unification effort of data formats
used by 13C-MFA programs is not only beneficial for
the implementation of web services, because XML and
HDF5 are standard formats available in many program-
ming languages and tools. Using web service technol-
ogy, 13C-MFA applications are easily extensible to run
within a distributed computing environment, as it was
demonstrated with the Monte Carlo bootstrap example.

Future work includes the integration of databases into
the workflow system. Since some of the 13C-MFA
programs are long-running scientific applications, these
synchronous web services will be replaced by asyn-
chronous Grid service calls. All ingredients for scien-
tific workflow orchestration of 13C-MFA services on
Grid and Cloud resources are readily available [20].
The presented Monte Carlo bootstrap workflow is to be
integrated into large-scale 13C-MFA applications con-
sisting of numerous simulation jobs and human interac-
tion tasks.
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