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Abstract  

 A new off-line optimization approach for system identification, known as the Pseudo-
Output Error (POE) algorithm, is based on the introduction of a stationary filter in 
order to compute the sensitivity functions. The selection of the filter is crucial so that 
the POE algorithm converges to the desired values of the real system. Generally, it is 
possible to have a priori knowledge of the desired system such as input-output 
measurements, harmonic studies or the step input response.  The selected stationary 
filter is a low pass filter. Its order is assumed to be the same as the order of the model 
and the corresponding pass band is a priori information. In this context, the effect of 
the bandwidth, defined in terms of the cut-off frequency of the stationary filter, on the 
convergence of the POE algorithm is studied and is analyzed.   The results of the 
performed Monte-Carlo simulations show that the convergence of the POE algorithm 
to the desired values of the system to be identified is affected by the selection of the 
cut-off frequency of the stationary filter.  It is more appropriate to select the cut-off 
frequency of the stationary filter to be greater than the corresponding value of the real 
system for the convergence of the POE algorithm. The convergence is achieved within 
a range of cut-off frequencies.  
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1 Introduction 
One aspect of system identification is the parameters’ 
estimation of an assumed model that best 
characterizes the real system to be identified. System 
identification algorithms can be classified generally 
into two categories: i) the Equation Error (EE) 
algorithms and ii) the Output Error (OE) Algorithms 
[1]. The mechanism, the accuracy and the ability to 
converge to the desired solution differ from one 
algorithm to another. 

The convergence of optimization algorithms to global 
or to local extremums has been a concern of great 
importance to researchers using such algorithms in 
their respective fields, particularly, in system and/or 
model identification.  The global convergence is 
generally attained by using   assumptions that are not 
always valid in practice, requiring complicated 
mathematical developments or time consuming 
computations.   The literature is filled with methods of 
optimization for a wide variety of applications. 
Generally, they can be classified in two main 
categories: i) The derivative methods and ii) the non-
derivative methods.  

The derivative methods are based on the computation 
of the derivative of a cost or objective function to 
determine the direction of the search and the values of 
the parameters to be identified for the next iteration. 
The algorithms that are well known and most efficient 
include Newton/Gauss-Newton, Levenberg-
Marquardt, conjugate gradient, Quasi-Newton. They 
are characterized by a rapid convergence near the 
minimum.  The main disadvantages include the 
sensitivity to the initial conditions (such as the values 
of the unknown parameters) and the convergence to 
secondary minimums.  

On the other hand, the non derivative methods do not 
require the computation of the derivative of the cost 
function. Consequently, they are not attracted to 
secondary minimums during the convergence 
procedure. It needs only evaluations of the function to 
be minimized. This represents a major advantage. 
They include: the heuristic methods that explore the 
space by successive iteration (simplex), and the 
stochastic methods that explore points of space by 
following a random process (Monte-Carlo, simulated 
annealing, genetic). The drawbacks include a slow 
convergence and they often require a fine adjustment 
or tuning of the parameters.  

Generally, the derivative algorithms are somewhat 
more powerful than the approaches requiring only the 
evaluation of the function to be minimized. But, it is 
not always enough to compensate for the computation 
of the derivatives every iteration. However, it can be 
found applications in which a derivative-based 
approach performs much better than a non-derivative 
based approach and vice-versa. The algorithms 

presented in this paper can be classified among the 
derivative methods. 

   The Output Error algorithms for system' 
identification offer asymptotically a non biased 
estimation [2], [3]. Unfortunately, this property is 
achieved at the cost of the minimization of a quadratic 
criterion by Non Linear Programming (NLP). This is 
generally translated into a non uniqueness of the 
optimum [4]. This fundamental problem can be solved 
by a pre-optimization procedure. Some researchers 
propose an optimization technique based on a genetic 
algorithm [5], even though it has its limitation. Thus, 
by initializing an optimization algorithm of the 
Newton’s type near the global optimum, one can 
benefit from the presented properties. However, this 
procedure is costly in terms of computation time.  

    Other researchers offer a pre-initialization 
procedure that is based on EE algorithms i.e. a linear 
optimization procedure using a Least Square approach 
[1], [6], [7], [8]. Even though the first estimation is 
asymptotically biased, it is generally close to the 
global optimum. This methodology can be tuned and 
perfected by a variable metric technique. 

 The problem of convergence of Output-Error 
algorithms can be resolved by approaching the 
problem from a different perspective. In this context, a 
researcher has implemented a recursive algorithm 
based on the theory of Hyper-stability [9]. The 
analysis shows that it converges to a unique optimum. 
The apparent contradiction with the general approach 
is due to the fact that this recursive algorithm does not 
minimize a quadratic criterion. In this regard, an off 
line algorithm is proposed to generalize the precedent 
approach [10], [11].  The algorithm is called the 
Pseudo-Output Error (POE) Algorithm [12].  

    The POE algorithm is based on the introduction of a 
stationary filter in the computation of the sensitivity 
functions in order to improve the convergence to a 
global optimum and to facilitate the use of the Output 
Error (OE) algorithms of the Newton's type as an 
initialization step. However, the selection of the filter 
is highly crucial in achieving the convergence toward 
the desired solution and consequently the 
identification of the system under study. Thus, the 
appropriate filter’s selection requires a priori 
information (such as the Pass band) about the real 
system. In this context, the effect of the filter’s cut-off 
frequency on the POE algorithm is investigated, 
analyzed and quantitatively evaluated. The evaluation 
is performed using Monte-Carlo simulation 
techniques.  

This paper is organized as follows:   A presentation of 
the system’s model and the POE algorithm are given 
in Section 2. The method of evaluation is presented in 
Section 3. The performed Monte-Carlo experiments 
and the corresponding results and analysis are 
presented in Section 4. Finally, a conclusion is 
presented in Section 5. 



2 Method 
 

2.1 The real System 

Consider a stable continuous time system defined by 
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Where  

     “q” is the derivative operator 

      y(t) is the output response of the system  

      u(t) is the input signal to the system  

      w(t) is the added noise that perturbs the output      

            response  

The functions A(q) and B(q) are defined as follows:   
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2.2 The model 

As already stated, the problem of system identification 
involves the estimation of the parameters of the 
system. In this case, they are the “a1,…an” and 
“b0….bm”.  Also, it involves the definition of the 
model since that indicates the number of unknowns to 
be estimated. Thus, the structure of the system is 
assumed to be known and the model to be identified 
can be expressed as   
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Where )ˆ,( θtyM  is the output response of the model 

due to the input excitation u(t) and θ̂  represents the 
parameters of the system to be identified. The latter 
vector is given by 
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The output of the model at the ith iteration can be 
expressed as  
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2.3 The POE Algorithm  

The objective of system identification is to estimate 
the parameters of the model such that the model’s 
output )ˆ,( θtyM  is close as possible to the measured 
noisy output )(ty . Therefore, the estimation is 
accomplished by forming a quadratic criterion 
function )(θJ defined in terms of the difference 
between the output response of the model and the 
collected noisy output signal i.e.  
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where N is the number of the measurements and 
)t(Mε is the error signal.  

Therefore, the above function )(θJ must be 

minimized to estimate the optimal parameters *θ of 
the assumed model such that ),( *θtyM  will best 
approximate the measured output signal.  

The minimization is performed using an iterative non-
linear optimization technique, namely, the Gauss-
Newton algorithm. The update of the parameters from 
iteration to another is given by 
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Where the gradient θ
′̂J and the Hessian θ

′′̂J  are 
computed in terms of the sensitivity function as 
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The sensitivity functions are given by  
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Subsequently, the vector of the sensitivity can be 
written as  
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The above sensitivity function depends on the filter  
)ˆ,q(Â iθ  and consequently, its corresponding 

parameters. Having initialized the Gauss Newton 
algorithm by the initial parameters, the above 
sensitivity functions vary every iteration.  

The developed POE algorithm involves the 
introduction of a stationary filter D(q) in which the 
parameters does not vary from one iteration to 
another.  That is, the filter )ˆ,(ˆ

iqA θ is replaced with 
the filter D(q) and the Pseudo-sensitivity functions 
become 
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Thus, the POE algorithm depends on the stationary 
filter D (s) which should be carefully selected.  

 Subsequently, the Pseudo-Output Error (POE) 
algorithm is obtained  
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At first, the Gauss-Newton OE algorithm (Eq. (8)) and 
the Pseudo-Output Error Algorithm (Eq. (16)) appear 
to be similar. The only difference is manifested in the 
computation of the sensitivity functions. Using the 
Gauss-Newton OE algorithm, the sensitivity functions 

are obtained based on the filter (
)ˆ,(ˆ

1

iqA θ
). The 

corresponding parameters vary from one iteration to 
another. On the other hand, using the POE algorithm, 
the sensitivity functions (or rather pseudo-sensitivity 

functions) are obtained based on the filter (
)q(D

1 ) 

where the parameters are fixed. This difference is 
fundamental in the mechanism of the convergence. 
Effectively, while the algorithm of Gauss-Newton OE 
algorithm is based on the minimization of a quadratic 
criterion, the POE is not i.e. the minimization does not 
exist. In the latter case, the convergence to secondary 
minimums does not exist. Therefore, the selection of 

the filter 
)q(D

1  is crucial in the behavior of the POE 

algorithm.  

The ideal stationary filter is a filter defined by the real 
parameters of the system i.e. D(q)=A(q). However, the 
latter parameters are unknown.  The introduced filter 
is a low pass filter and has the same order of the 
model. Thus, an even less accurate estimation of its 
pass band (i.e. bandwidth), assumed as a priori 
knowledge and defined in terms of its cut-off 
frequency, is investigated and its effect on the 
convergence of an OE system identification algorithm 
is studied and is analyzed. 

3 Method of Evaluation 
  The dependence of the convergence of the POE 
algorithm on the bandwidth of the stationary filter is 
investigated using Monte-Carlo (MC) simulation 
techniques. Several scenarios were performed. Each 
scenario refers to a particular selection of 1/D(q).    
The assumed model and the true system are excited by 
the same input signal. 

The approach can be summarized as follows:  Given a 
real system, the output response is determined for a 
given input signal.  Having the input and output 
measurements, the next step is to define the structure 
of the model. It is assumed to have the same structure 
as the real system. Then, the parameters of the model 
are assigned a set of initial values. At this point, the 
system identification procedure (such as the POE, 
Gauss-Newton OE algorithm,…) is performed.  In 
other words, an optimization procedure is performed 
in order to estimate the desired parameters by 
minimizing an objective function defined in terms of 
the difference between the output response of the 
model and the output response of the real system.   
Thus, the unknown parameters are varied until the 
output response of the model is as close as possible to 
the output of the real system.  

4 Results and Analysis 
 In this section, Monte-Carlo simulations are 
performed to study the dependence of the convergence 
of the POE system identification algorithm on the cut-
off frequency of the stationary filter.   The results of a 
second and third order systems are presented.  

   The real system to be identified is a weakly 
oscillating second order system. It is defined in the 
Laplace domain (s-domain) by the following transfer 
function:  
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  Where nw and ξ  are the natural frequency and the 
damping coefficient of the oscillating system, 
respectively. They are selected to be 1.5 rad/s and 
0.001, respectively.  The input excitation is a periodic 
square signal. The sampling period is equal to 0.1 s.  



The selection of an oscillating second order system 
and a periodic excitation function leads to a quadratic 
criterion characterized by pseudo secondary 
minimums as illustrated in Fig. 1.  Therefore, this 
selection will greatly show the performance of the  
POE algorithm when it is compared with another OE 
algorithm, namely, the Gauss-Newton OE algorithm, 
in which the filter that is used in the computation of 
the sensitivity functions varies from an iteration to 
another.  
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Fig. 1: the quadratic criterion ),( ξnwJ  as a function 
of the two parameters of the model to be identified.  
 

As already stated earlier, the objective is to estimate 
the two parameters nw and ξ , and consequently, to 
identify the desired system.  Using the POE algorithm, 
the pseudo-sensitivity functions are derived and are 
given by the following expressions  
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where )s(YM  is the output response )t(yM  in the 
Laplace Domain,  )s(nwσ  is the sensitivity function 

of the parameter nw  in the Laplace Domain,  
)s(ξσ is the sensitivity function of ξ  in the Laplace 

domain and D(s) is the stationary filter. 

Then, the model’s structure of the system  is defined. 
It  is assumed to have the same structure as that of the 
real system (i.e. assumed to be  a second order 
system). Consequently, the selected stationary filter is 
a second order low pass filter defined by  
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The selection of an aperiodic filter allows to show 
that, in spite of a poor priori knowledge, good results 
are obtained.   

Having initialized the parameters to be estimated, the 
Pseudo-Output Error algorithm is executed to identify 
the desired system. Each Monte-Carlo experiment is 
performed using the same input/output data.  The 
initial values of nw are selected to be within a certain 
range and the damping coefficient is selected to be 
equal to 0.1 for all Monte-Carlo simulations.  

 Figures 2 and 3 illustrate the results of one MC 
experiment and show the performance of two 
identification algorithms, the POE algorithm and the 
Gauss-Newton OE algorithm, respectively. The 
experiment is performed by initializing the parameters 
to be estimated nw and ξ  to 4 rad/s and 0.1, 
respectively.  Each figure shows three different 
subplots: the objective function to be minimized 

),( ξnwJ  (Upper subplot), the damping coefficient ξ  
(lower plot) and the natural frequency nw  (middle 
plot). Each variable is displayed as a function of the 
number of iteration. The cut-off frequency of the 
stationary filter is assumed to be 1.5 rad/sec. 

 
Fig. 2: The evolution of ξ,w,J n  as a function of the 
Number of iteration using the POE algorithm. 

 

 In this MC experiment, the results show that the POE 
algorithm converges to the desired parameters’ values 
with a smaller number of iteration.  On one hand, the 
POE algorithm satisfies the selected tolerance within 
45 iterations.  On the other hand, it requires more than 



300 iterations for the Gauss-Newton OE algorithm.  
The tolerance is defined with respect to two 
successive values of the objective function ),( ξnwJ . 
Second, the POE algorithm converges to the desired 
parameters while the OE converges to a secondary 
minimum as illustrated by the corresponding plots.  
Thus, the performance of the POE algorithm is better 
than the Gauss- Newton OE algorithm. 

 
Fig. 3: The evolution of ξ,w,J n  as a function of the 
Number of iteration using the Gauss-Newton OE 
algorithm. 

Table 1 displays the results of the Monte-Carlo 
simulation experiments in which the stationary filter is 
selected to be a second order filter with a cut-off 
frequency )f2(w cc π= of 1.5 rad/sec. It illustrates 
four fields: i) the initial value of nw  ii) the optimized 
value nw , iii) the optimized value ξ   and iv) the 
number of iteration. The initial value of the damping 
coefficient is selected to be 0.1.  

The results of the table show that the POE algorithm 
converges to the desired values if nw is selected 
within a certain range i.e. .sec/rad0.8w4.1 n <≤  
Otherwise, the POE identification algorithm 
converges to a secondary optimum or diverges. 

Figure 4 elaborates further the effect of the bandwidth. 
It shows the dependence of the optimized values 

nw on the cut-off frequency cw of the stationary 
filters; (a) 0.5 rad/sec, (b) 1.0 rad/sec, (c) 2.0 rad/sec, 
4.0 rad/sec, (e) 8.0 rad/sec and (f) 10.0 rad/sec.  It is 
evident that the selection of the stationary filter’s cut-
off frequency is crucial for the convergence of the 

POE algorithm. The results highlight the following 
observations: i) it is more appropriate to select wc 
greater (or equal) than the true cut-off frequency of 
the real system, ii) for the given initial values ( ξ =0.1 
& varying nw ) and a particular stationary filter, the 
POE algorithm can converge to the true values for a 
certain range of nw  iii) the range is larger when wc is 
selected greater than the true value, iv) the POE 
algorithm converges to a secondary optimum or 
diverges if wc is selected beyond a certain value 
(upper bound).Thus, there is a range of wc within 
which the POE algorithm converges to the desired 
solution.  Otherwise, the identification algorithm 
diverges. 

 

Table 1.  Performance of the POE algorithm 
( ξ =0.001) 

 Initial  

Value nw  

Optimized 

nw  

Optimized 

ξ  

Number 
of 

iteration 

<=1.3 Diverge diverge  

1.4 1.5 0.001 343 

1.5 1.5 0.001 73 

1.7 1.5 0.001 31 

1.9 1.5 0.001 23 

2.1 1.5 0.001 22 

2.5 1.5 0.001 18 

3.0 1.5 0.001 26 

3.5 1.5 0.001 35 

4.0 1.5 0.001 45 

5.0 1.5 0.001 72 

6.0 1.5 0.001 144 

7.0 1.5 0.1191 572 

8.0 5.08 0.857 66 

 
Similar observations can be deduced from the plots 
that show the dependence of the optimized ξ on cw  
(Fig. 5). 

Another case of a second order system is studied.  The 
damping coefficient is chosen to be greater than 1 (i.e. 
ξ =1.2) and wn = 1.5 rad/sec (true ≈cw 0.75 rad/sec).  
In this particular case, similar conclusions can be 
deduced even though the range of wn for which the 
POE algorithm converges, is wider (Table 2). The 
initial value of the damping coefficient is selected to 
be 0.1.  The table shows the range of wn within which 
the POE algorithm converges for various stationary 
filters characterized by their respective wc.  
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Fig. 4: The effect of the cut-off frequency cw  of the 
stationary filter on the optimized value nw .  

Table 2: Performance of the POE algorithm ( ξ =1.2) 

 

 

 

 

 

 

Also,, the Monte-Carlo simulations are performed on 
a third order system that is defined by the following 
transfer function: 
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The stationary filter is assumed to be 
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The true cut-off frequency of the real system is about 
0.88 rad/sec.  The system is excited by a periodic 
square signal. The sampling period is equal to 0.1 s.  
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Fig. 5: The effect of the cut-off frequency cw  of the 
stationary filter on the optimized value ξ .  

The MC experiments are performed by selecting 
different stationary filters  characterized  by different  
cut-off frequencies.  The POE algorithm is executed 
using the following initial values 2a 0 = , 2a1 = , 

3a 2 = , 3b0 = .  Fig. 6 shows typical results of the 
convergence of the POE to the desired values. The 
cut-off frequency of the stationary filter is selected to 
be 3.0 rad/sec. On the other hand, the OE system 
identification algorithm does not converge with these 
set of initial values of the parameters.  

A summary of the results are tabulated in Table 3.  It 
displays the optimized values of the POE algorithm as 
a function of cw  of the selected stationary filter. It is 
evident that for the given initial values i) the POE 
identification algorithm can converge to the desired 
values when the cut-off frequency of the stationary 
filter is greater than the real value i.e. cw >0.88 
rad/sec, ii) the Convergence is achieved for a range of 

cw i.e. 0.9 rad/sec  <= cw  < 8 rad/sec.   

5 Conclusion 
In this paper, the effect of the bandwidth of the 
stationary filter on the convergence of the POE 
algorithm is investigated. The evaluation is performed 
using Monte-Carlo simulation techniques.  The latter 
filter is introduced in the POE algorithm to compute 
the corresponding sensitivity functions of the well-
known Gauss-Newton OE algorithm.  These functions 
are not the true functions of sensitivity. Therefore, the 
name of pseudo-functions of sensitivity and the 
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8.0 [0.2,  3] 

10. Divergence 
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1.0 [0.2, 15] 

1.5 [0.2, 20] 

3.0 [0.2,  30] 



Gauss-Newton OE algorithm becomes the Pseudo-
Output Error (POE) algorithm.   

 
 Fig. 6: The evolution of 20 a,b,J  as a function of the 
Number of iteration using the POE algorithm. 

 
Table 3: The performance of the POE algorithm: 

(3rd order system with the desired cut-off 
frequency 88.0≈ rad/sec) 

cw   0b  2a  1a  0a  

< 0.7 Div. Div. Div. Div. 

0.7 -0.84 -3.38 1.5 -0.23 

0.8 -0.53 1.52 -1.9 -0.49 

0.9 1 2.2 2.2 1 

1 1 2.2 2.2 1 

1.5 1 2.2 2.2 1 

3.0 1 2.2 2.2 1 

4.0 1 2.2 2.2 1 

5.0 1 2.2 2.2 1 

6.0 1 2.2 2.2 1 

7.0 1 2.2 2.2 1 

8.0 Div.  Div. Div. Div. 

 

The simulation results show that the filter’s cut-off 
frequency should be selected higher than the true 
value. However, it should not be selected far from FC. 
The appropriate selection of the stationary filter has 

lead to the convergence of the POE algorithm to the 
desired values. Otherwise, the identification algorithm 
diverges and consequently, the corresponding system 
is not identified.   Even though a priori knowledge is 
poor, good results of convergence are obtained with 
the POE algorithm.  
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