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Abstract  

Speckle noise is an inherent property of intravascular ultrasound imaging 
(IVUS), and it generally tends to deteriorate the image quality (resolution and 
contrast), thereby reducing the diagnostic value of this medical imaging 
modality. As a result, the speckle reduction filtering is considered to be an 
important and essential procedure to be used, whenever IVUS images are used 
for atherosclerotic lesions assessment. Because next step of de-speckling is 
contour detection, it was necessary for the filter to be noise-reducing and edge-
enhancer. The present study evaluates performances of three different denoising 
filters– Wiener filter, Anisotropic diffusion filter (Perona-Malik algorithm), 
Total variation filter – and demonstrates that in all these cases, the preprocessing 
procedure results in a dramatic improvement in the quality of filtered images. 
The results included a series of simulated and in vivo IVUS images. 
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1 Introduction 
Intravascular ultrasound (IVUS) imaging [1] is a 
subject to transducer ring-down artifacts, missing 
vessel parts due to deep calcification shadowing or 
side-branches, heterogeneously plaques and ultrasonic 
speckle from blood. The main objective of image de-
speckling techniques is necessary to remove such 
noises while retaining as much as possible the 
important image fine details and taking into account 
the nature of IVUS images. Intravascular ultrasound 
imaging is a widely used medical imaging procedure 
because it provides information on the lumen cross 
section area, the vessel wall thickness and on the 
length, volume and position of the atherosclerotic 
lesion. Though, one of its main limitations is the poor 
IVUS images quality due to speckle noise. The 
existence of ultrasound speckle is unattractive since it 
deteriorates image quality and it complicates the tasks 
of clinical interpretation and diagnosis. Consequently, 
speckle filtering is an essential pre-processing step for 
segmentation, analysis, and recognition from medical 
imagery assessments. 

Several methods have been proposed in the literature 
for removing speckle. Among them, linear filters [2–
4], temporal averaging [5], median filter [6], and 
Wiener filter. However, these filter approaches were 
developed mainly for additive random noise, and had 
little success in speckle noises suppression. Nonlinear 
methods [14–19] can be regarded as adaptive filters, 
whose smoothing direction and strength are controlled 
by an edge detection function. Though these adaptive 
methods are capable of efficiently suppressing the 
speckle pattern, they still seem to destruct small 
details being actually low-pass filters. The 
multiplicative nature of the speckle image formation 
was introduced in [13] via proposing a model, which 
first converts the multiplicative speckle noise to an 
additive noise after a logarithmic transformation to a 
received image. Subsequently, the Wiener filtering 
followed by the exponential transformation is used 
here to remove the resulted additive noise. The 
structure of the model turned out to be generic which 
implies further modification through replacing the 
classical Wiener filtering by other filtering schemes. 
Over the past decade, discovery of the wavelet 
transform and fast wavelet packet methods triggered 
the proposal of wavelet de-noising [21-24] as a 
powerful method of recovering signals from noisy 
data. By comparing the resultant images, obtained in a 
series of computer-based and in vivo experiments, the 
study demonstrates that the proposed preprocessing 
procedures are very efficient and result in dramatic 
improvement in the quality of de-speckled images. 
Furthermore, similar results were obtained for two 
alternative nonlinear de-speckling algorithms via 
replacing the wavelet de-noising procedure by total-
variation filtering [14] and anisotropic diffusion [15]. 

This study demonstrates the applicability of 
alternative nonlinear filtering methods to the de-
speckling problem in ultrasonic imaging. 

The paper is organized as follow. Section II is devoted 
to discussion of properties of the speckle noise, and 
provides a brief overview of the nonlinear filters used 
in the present study. Experimental results are 
demonstrated in Section III, and are devoted to 
discussion in session IV. Some essential conclusions 
are summarized in Section V. The aim of this study is 
to validate the effectiveness and usefulness of some 
nonlinear filters that can improve the IVUS images 
diagnostic accuracy.  

2 Methods 
2.1 Speckle noise in IVUS image 

Intravascular ultrasound (IVUS) is a new medical 
imaging modality that provides real-time, cross-
sectional and high-resolution images of blood vessels. 
In contrast to angiography that only displays 
silhouette views of the vessel lumen and allows the 
definition of severe stages of coronary artery disease, 
IVUS imaging permits visualization of atherosclerotic 
lesion morphology and precise measurements of 
arterial cross-sectional dimensions. These unique 
capabilities have led to many important clinical 
studies including quantitative assessment of the 
severity of luminal stenosis, progression and 
regression of atherosclerosis, effectiveness of catheter-
based therapeutic procedures and evaluation of the 
outcome of an intravascular pre- and post- 
intervention.  

Like the progress of other clinical imaging modalities, 
the advent of IVUS technology has brought in new 
technical challenges in the field of medical image 
processing. Quantitative analysis of IVUS images 
requires the assessment of vascular wall such as the 
lumen and plaque composition. Manual contour 
tracing is laborious, time consuming and subjective. 
To overcome these problems, automatic contour 
detection methods may improve the reproducibility of 
quantitative IVUS and avoid a tedious manual 
procedure. However a high level of speckle noise may 
mask the intensity boundary, resulting in a rather poor 
definition of the object border. Moreover, drop-out of 
echo signals in parts of the object boundary also 
complicates border detection in intravascular 
ultrasound images. This work aims to suppress 
speckle in IVUS images. 

Speckle in intravascular ultrasound images is seen as 
an inherent granular structure which is caused by the 
constructive and destructive coherent interference of 
back scattered echoes of tissue or blood. The acquired 
image is thus corrupted by a random granular pattern 
that delays the interpretation of the image content 
which affects the human ability to identify normal and 
pathological vessel tissue [16].    



In medical imaging systems, speckle noise is referred 
as texture that may possibly contain useful 
information. The desired grade of speckle smoothing 
preferable depends on the clinicians’ knowledge and 
on the application. For image segmentation procedure, 
estimating the size of the total cross-sectional area of 
the vessel and defining the interface between intima-
media are usually preferred while smooth out the 
speckle texture.   

2.2 Filtering Methods 

Several techniques have been proposed for the 
despeckling of medical ultrasound images. In this 
section we present the theoretical overview of three 
de-speckling techniques; Wiener filter, anisotropic 
diffusion filter, and total variation filter. 

2.2.1 Wiener Filter 

One important classical technique for attempting to 
improve the quality of an image is the Wiener filter 
[17]. The Wiener filter is a global adaptive filter that 
produces an estimation of the uncorrupted image by 
minimizing the overall mean square error between the 
estimate and the uncorrupted image in a stochastic 
sense. The Wiener filter is mainly used to restore the 
corrupted images and remove the additive noise. It can 
be shown that the restoration linear filter that finds the 
optimum estimate in Fourier domain is given by 
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where g is the filter convolve the original image, Sww 
is the power spectrum of the additive noise and Sss is 
the power spectrum of the original image. In this 
problem, we only assume the original image is only 
added with noise, so the filter g=1 in Fourier domain. 
The Wiener filtering is then simplified into 
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The power spectra of the original image Sss is 
unknown. A direct way is to model the power spectra 
of the original image as 
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where 2
s is the variance of the unknown original 

image S. However, we usually use the variance of the 
corrupted image 2

x to replace the 2
s. x and y are 

frequency coordinators. 

The power spectrum of the additive noise Sww is also 
unknown. Since the added noise is not Gaussian 
White Noise, we can’t choose a relative uniform 
region in the corrupted image and calculate the power 
of this region.  

2.2.2 Anisotropic Filter 

Anisotropic diffusion filter is an efficient nonlinear 
technique that simultaneously performs contrast 
enhancement and noise reduction. It can smooth 
homogeneous image regions while retaining image 
edges. The main concept of anisotropic filter is the 
introduction of a function that preserves the image 
edges. This function, called diffusion coefficient, is 
chosen to encourage intra-region smoothing in 
preference to inter-region smoothing [18].  

Perona and Malik [18] proposed a nonlinear partial 
differential equation to smooth corrupted image on a 
continuous domain, the diffusion is as follow 
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where I represents the  image to be filtered, c(x) is the 
diffusion coefficient and I0 is the initial image. For 
c(x), it has two coefficients options 
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where k is the edge magnitude parameter. 

It can be shown, that the equation (4) involving only 
first and second spatial derivatives of the corrupted 
image I defines the affine geometric heat flow. 
Moreover, such diffusion process has the desirable 
characteristics to preserve edges while exhibiting 
numerical stability [15]. Note that the time 
discretization step and the iteration number were used 
as parameters of the non-linear smoothing filter. 
Therefore, these parameters were adjusted to achieve 
the best visual results. 

2.2.3 Total Variation Filter 

Another class of de-noising methods consists in 
variational formulations, which transform an noise 
contaminated image J into an original image I that 
minimizes some energy functional Eλ (I) depending on 
J and on a parameter λ. Then a discrete version of the 
total variation (TV) filter, as originally specified by 
Rudin-Osher-Fatemi (ROF) model for image 
denoising [14], recovers I by solving 
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where   stands for the classical Euclidean norm on 
2. Note that the positive parameter λ controls the 
amount of de-noising and should be set then to the 
noise level. 



The Total Variation filter is now considered to be 
among the most successful PDE based methods for 
image restoration and edge enhancement. The 
capability of filtering out the noise without blurring 
the most universal and crucial image features is 
behind its success. Note that the second term of the 
functional Eλ evaluates either the l1-norm or l2-norm of 
the solution’s gradient. Because these norms are 
known to be minimized by image possessing sparse 
structure, the minimization of the ROF energy will 
prefer solutions having sparse gradient. Hence, the TV 
filtering is especially useful for recovering piece-wise 
constant images. It is worthwhile noting that the 
parameter λ controls the balance between de-noising 
and smoothing.  

The TV filter was implemented by solving the ROF 
minimization problem (7) using the conjugate gradient 
algorithm [18]. It is shown in [19] that the TV-
denoising can be alternatively implemented as a 
signal-dependent filter. Finally, it should be noted that 
the ROF functional Eλ, as defined by (7), is not 
smooth, and, therefore, it cannot be directly 
minimized by means of the conjugate gradient 
algorithm. In order to overcome this problem, a small 
positive number was added under the square-root in 
the second term of Eλ and, subsequently, the resulted 
regularized functional was minimized. 

2.3 Performance Evaluation 

In order to assess the performance improvements 
achieved by each speckle suppression method. The 
commonly used criterions are mean-square-error 
(MSE) and Peak Signal-to-MSE (PSNR). These two 
metrics were calculated for both the speckle-degraded 
and the restored images. These parameters are defined 
in equations (8) and (9), calculated over local ROI 
image windows 
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where S is the original image , Ŝ is the despeckled 
image, and N is the total number of pixels in the 
current ROI window. The MSE value is a typical error 
measurement, while the PSNR is used instead of the 
classical SNR value in the case of additive noise. 

3 Results 
3.1 Simulated IVUS images 

The synthetic image was despeckled using various 
filters and results were shown in the Fig. 1. The MSE 
and PSNR of the initial image and the filtered images 
were produced in table 1. 

Tab. 1 MSE and PSNR for different filters: Simulated 
image 

 Wiener Anisotropic Total variation 

MSE 12.98 46.56 55.87 

PSNR 16.27 18.22 23.45 

3.2 In Vivo IVUS image 

A real intravascular ultrasound image was despeckled 
using various filter approaches and results were shown 
in the Fig. 2. The MSE and PSNR of the initial image 
and the filtered images were produced in table 2. 

Tab. 1 MSE and PSNR for different filters: Real 
image 

 Wiener Anisotropic Total variation 

MSE 10.54 40.51 51.71 

PSNR 19.47 16.99 25.14 

4 Discussion 
Despeckle filtering is an important and essential issue 
in the enhancement of IVUS images, in this paper 
three different methods are implemented and 
evaluated 2 images both from simulation and real 
data. Wiener filter attempts an optimal speckle 
reduction given the noise power spectrum is known. 
However, the speckle power information is unknown 
in medical imaging situation. In such case, the power 
spectrum of the simulated noise can be used, and the 
results are also impressive comparing with the original 
IVUS images. Anisotropic diffusion method is easy to 
implement and the calculation is straightforward. The 
results obtained using this method are even better than 
Wiener filter. Thereby the restored images usually 
have more contrast, while details of vessel structures 
are kept well. 

To compare the performance of the above mentioned 
3 filters, we take the same small region with pixel size 
64*64, and calculate the MSE and PSNR.  The results 
are listed in the tables 1 and 2. 

From the tables above we can see that the Wiener 
filter, anisotropic diffusion filter and total variation 
filter improve the PSNR. It is shown that these filters 
are suitable for removing the speckle in intravascular 
ultrasound images. 

 

 

 

 

 

 



5 Conclusion 
In this study, we implemented Wiener filter, 
anisotropic diffusion filter, and total variation filter to 

despeckle in medical intravascular ultrasound images. 
The Wiener filter can improve the IVUS images 
quality well and simulated power spectrum of speckle 
can be applied on many medical imaging situations. 

    
 (a)                                                          (b) 

    
(c)     (d) 

                Fig. 1. Results of Simulated image: (a) Original image, (b) Wiener, (c) Anisotropic diffusion, (d) Total variation. 
 

                                                            
             (a)                                                          (b) 

                   
           (c)                               (d) 

  Fig. 2. Results of Real image: (a) Original image, (b) Wiener, (c) Anisotropic diffusion, (d) Total variation. 
 



The Anisotropic diffusion filter performed well on 
IVUS images with speckle as long as we choose 
reasonable parameters, and also it doesn’t need extra 
information of noise pattern. The Total variation filter 
can improve the image quality (contrast and vessel 
wall details), the method is simple to implement and 
the statistics is easy to estimate and characterize. 

Initial findings show promising results from these 
three filters, different clinical images are required to 
evaluate the performance and the effects of the filters 
on radiologists’ diagnosis. Other filtering methods 
may also be studied and implemented to compare with 
these filters, for example, wavelet-based denoising 
methods.  

6 References 
[1] G.S. Mintz, S.E. Nissen, W.D. Anderson, S.R. 

Bailey, R. Erbel, P.J. Fitzgerald, F.J. Pinto, K. 
Rosenfield, R.J. Siegel, E.M. Tuzcu, P.G. Yock, 
American College of Cardiology clinical expert 
consensus document on standards for acquisition, 
measurement and reporting of intravascular 
ultrasound studies (IVUS). A report of the 
American College of Cardiology task force on 
clinical expert consensus documents, J. Am. Coll. 
Cardiol. 37 (2001) 1478–1492. 

[2] Burckhardt CB. Speckle in ultrasound B-mode 
scans. IEEE Trans Son Ultrason 1978;25:1–6. 

[3] Abbott JG, Thurstone FL. Acoustic speckle: 
theory and experimental analysis. Ultrason Imag 
1979;1:303-24. 

[4] Wagner RF, Smith SW, Sandrik JM, Lopez H. 
Statistics of speckle in ultrasound B-scans. IEEE 
Trans Son Ultrason 1983;30:156. 

[5] Goodman JW. Some fundamental properties of 
speckle. Opt Soc Am J 1976; 66:1145–50. 

[6] Ioannidis A, Kazakos D, Watson DD. Application 
of the median filter on nuclear medicine 
scintigram images. Proceedings of the 7th 
International Conference on pattern recognition 
1984:33–6. 

[7] J. W. Goodman, “Statistical properties of laser 
speckle patterns”, in Laser Speckle and Related 
Phenomena, J.C. Dainty, Ed., No.9 in Topics in 
Applied Physics, Chapter 2, pp.9-77, Springer-
Verlag, Berlin, 1977. 

[8] C. B. Burckhardt, “Speckle in ultrasound B-mode 
scans, IEEE Trans. Sonic Ultrason., vol. SU-25, 
No 1, pp.1-6. Jan.1978. 

[9] J. G. Abbott and F.L. Thurstone, “Acoustic 
speckle: Theory and experimental analysis”, 
Ultrason. Imag., vol.1, pp.303-324, 1979. 

[10] T. Loupas, W.N. McDicken, and P.L. Allan, “An 
adaptive weighted median filter for speckle 

suppression in medical ultrasound images”, IEEE 
Trans. Circuits Syst., vol.36, No.1, pp.129-135, 
Jan.1989. 

[11] M. Karaman, M.A. Kutay, and G. Bozdagi, “An 
adaptive speckle suppression filter for medical 
ultrasound imaging”, IEEE Trans. Med. Imag., 
vol.14, pp.283-292, June 1995. 

[12] J. T. M. Verhoeven and J. M. Thijssen, 
“Improvement of lesion detectability by speckle 
reduction filtering: A quantitative study”, 
Ultrason. Imag., vol. 15, pp.181-204, 1993. 

[13] A.K. Jain, Fundamental of Digital Image 
Processing, Englewood Cliffs, NJ: Prentice-Hall, 
1989. 

[14] L. Rudin, S. Osher, and E. Fatemi, “Nonlinear 
total variation based noise removal algorithms”, 
Phys. D, vol. 60, pp. 259–268, 1992. 

[15] G. Sapiro and A. Tannenbaum, “Image smoothing 
based on an affine invariant flow”, in Proc. Of 
Conf. on Information Sciences and Systems, John 
Hopkins University, Baltimore, Maryland, 
pp.196-201, March 1993. 

[16] M. Tur, K. C. Chin, and J. W. Goodman, “When 
is speckle noise is multiplicative?”, Applied 
Optics, vol. 21, No.7, pp.1157-1159, April 1982 

[17] E. Sekko, G. Thomas, and A. Boukrouche, “A 
deconvolution technique using optimal Wiener 
filtering and regularization”, Signal processing, 
vol. 72, pp. 23-32, 1999. 

[18] P. Perona and J. Malik, “Scale-space and edge 
detection using anisotropic diffusion”, IEEE 
Trans.Pattern Anal. Mach. Intell., vol.12, No.7, 
pp.629-639, July 1990. 

[19] D. Bertsekas, Nonlinear programming, Athena 
Scientific, Belmont, Massachusetts, 1999. 

[20] T. Chan, S. Osher, and J. Shen, “The digital TV 
filter and nonlinear de-noising”, IEEE Trans. 
ImageProcessing, vol.10, No.2, pp.231-241, Feb. 
2001. 

[21] I. Daubechies, Ten lectures on Wavelets. 
Philadelphia, PA: SIAM, 1992. 

[22] S. G. Mallat, A Wavelet Tour of Signal 
Processing. New York: Academic, 1998. 

[23] D. L. Donoho, “De-noising by Soft-
Thresholding”, IEEE Trans. Inform. Theory, vol. 
41, No. 3, pp.613-627, May 1995. 

[24] D. L. Donoho and I. Johnstone, “Adapting to 
Unknown Smoothness via Wavelet Shrinkage”, 
J.American. Stat. Assoc., 90, pp.1200-1224, 1995. 


