
A COMBINED APPROACH OF PATH PLANNING
FOR MOVING OBJECTS IN VIRTUAL

ENVIRONMENTS
Gašper Mušič1, Gregor Klančar1

1University of Ljubljana, Faculty of Electrical Engineering
1000 Ljubljana, Tržaška 25, Slovenia

gasper.music@fe.uni-lj.si (Gašper Mušič)

Abstract

The paper compares selected methods of path planning with regard to the computational com-
plexity with the goal of establishing a framework for path planing of moving objects in virtual
environment. The path planning framework is intended for use in various training simulators,
e.g. in cases where the trainee is driving a simulated vehicle while there are other autonomously
moving vehicles within the virtual environment. The trajectories of autonomously moving ob-
jects have to be carefully planned in order to obtain a realistic performance of a simulator. Based
on the results of the comparison of the path planning methods, the advantages and drawbacks
of selected methods are identified and a new combination is proposed with a suboptimal but
efficient corridor calculation and an advanced path optimization within the corridor. The com-
bined approach utilizes heuristic search algorithms as well as methods of numerical solving
of a particular form of partial differential equation - an eikonal equation. The use of related
fast marching method enables to derive smooth trajectories within the corridor identified by the
heuristic search algorithm while keeping the on-line computational burden relatively low.

Keywords: virtual environments, path planning, quadtrees, triangulation, fast marching
method.

Presenting Author’s Biography
Gašper Mušič received B.Sc., M.Sc. and Ph.D. degrees in electrical en-
gineering from the University of Ljubljana, Slovenia in 1992, 1995, and
1998, respectively. He is Associate Professor at the Faculty of Electrical
Engineering, University of Ljubljana. His research interests are in discrete
event and hybrid dynamical systems, supervisory control, production con-
trol and industrial informatics.

1 Introduction
Virtual environments, such as training simulators, con-
tain a number of moving objects. While some of them
are manually driven by the operator, others move au-
tonomously to simulate a dynamic environment. In or-
der to obtain a realistic performance of a simulator, the
moving paths have to be carefully planned according to
object target points and current environment configura-
tion. In dynamic, changing virtual environment the path
calculations for an autonomous moving object need to
be frequently updated, therefore making efficient set of
path planning algorithms one of the key components.

With the given map of the environment and the target
location the path planning aims to determine a trajec-
tory, which will lead the object from the starting posi-
tion to the target position. In general the planning in-
volves two stages: (i) a suitable representation of the
environment where the path has to be planned, and (ii) a
search algorithm, that is capable of finding (sub)optimal
path from the initial to the target position. The planning
can involve a third stage where the path is optimized
taking into account dynamic constraints of a moving
object. This often leads to a requirement for smooth
moving paths free of sharp turns.

The path planning methods initially transform the en-
vironment where the object of interest resides into a
structure adapted to the requirements of path planning.
Such representations include generalized Voronoi dia-
grams, various methods of space triangulation, regu-
lar grids and quadtrees, among others. Particular path
planning algorithms may be used in combination with
different representations of the environment, although
certain representations are more suitable for some algo-
rithms. Most generally used algorithms include A* and
its derivates D*, D* Lite, E*, algorithms based on fast
marching method and others.

The computational burden of A* algorithm (and oth-
ers) increases rapidly with the increase of the search
space. A better efficiency can be achieved by two level
planning where a coarse plan is derived first and fine
planning takes place within constrains imposed by the
initial plan.

The literature review indicates environment segmenta-
tions based on Delaunay triangulation (dual to Voronoi
diagram) and framed quadtrees among the most promis-
ing approaches, and A* based path search algorithms
as a suitable way of path optimization within the seg-
mented environment. The computational demand of
planning in complex environments is reduced by two or
three level planning and exploitation of a-priori knowl-
edge or heuristics. Alternative approaches, e.g. bug
algorithms, are also investigated but their application
is questionable as the results are often not predictable,
calculated path may be far from optimal or the target is
not reached.

The obstacle avoidance for the known fixed obstacles is
included in the path planning algorithms. The moving
obstacles need to be addressed separately. Avoidance of
moving obstacles can be achieved by efficient subopti-

mal approaches such as potential (vector) field which
repels objects from obstacles and attract them to the
target or the previously planned path. The avoidance
is achieved here in a purely responsive manner, without
real planning. The planning based approaches often in-
volve D* algorithm, i.e. a dynamic version of the A*
algorithm, where the branch costs within the calculated
search tree may be readjusted during optimization when
a change in environment occurs, and the complete re-
calculation of the tree is not necessary as in case of A*
algorithm.

In the presented work a simulation study of a se-
lected number of path planning algorithms has been
performed with the emphasis on their computational de-
mand. Based on the results, a novel combination of path
planning algorithms has been proposed with a subopti-
mal but efficient corridor calculation and an advanced
path optimization within the corridor.

2 Search space segmentation based path
planning methods

Two space segmentation methods were considered in
combination with an A* star based path optimizer:
Quadtree segmentation and Delaunay triangulation.

2.1 Quadtrees space segmentation

Quadtrees enable a decomposition of the space map
into free cells and cells occupied by obstacles. Cells are
quadratic with the varying dimension. The map is ini-
tially divided by a coarse rectangular grid of four cells.
The cells of the grid which are partially covered by ob-
stacles are further divided until a prescribed description
accuracy is achieved.

The last level of cells without children (successors) are
called leafs which can be occupied with some obstacle
or free. An essential step in quadtree generation is the
cell occupancy test which is due to computational effi-
ciency performed in two steps:

1. If squares outlined to the obstacles have no inter-
section with currently tested cell then this cell is
marked as free leaf otherwise proceed to step 2.

2. Check if any of the obstacle corner is inside of the
tested cell or if any of the cell corners is inside of
the obstacle. If none of the two is true, additionally
check if any of the cell and the obstacle sides cross.
If none of the tests is true than mark this cell as a
free leaf otherwise divide the cell and proceed with
step 1.

Quadtree segmentation results in compact environment
map presentation and enables efficient query about oc-
cupancy of some position or area in the environment [7]
[8].

To shorten the computational time of A* path finding
algorithm the obtained quadtree is extended with visi-
bility graph which indicates possible paths among free
cells. To each free leaf cell an array of its free neighbor

indexes is adjoined. This enables easier and computa-
tionally efficient moves of A* algorithm among the free
quadtree leafs. The visibility graph is computed as fol-
lows:

• query for the area that is a little bigger (1/2 size of
the prescribed minimal cell size) than current leaf
size

• find leafs that are visible (accessible) from current
leafs. Store their indexes to the current leaf visi-
bility array,

• Calculate distances to the visible neighbor leafs
and store them in an array.

By this stage the obtained quadtree structure is prepared
for A* path finding algorithm. The pathfinding algo-
rithm based on A* search strategy guarantees the short-
est path between start and end point if an optimistic
heuristic is used. This means that predicted path cost
(length) must always be smaller (shorter) or at lest equal
to the real path cost (length). Choosing line of sight for
the predicted path length always fulfils this condition.

A corresponding example of the space segmentation
and a calculated sample path are shown in Figure 1.

2.2 Space segmentation by constrained Delaunay
triangulation

The triangulation is an important tool for representation
of planar regions and is used in several application. The
planar region is divided into a number of sub-regions of
triangular shape. Commonly a set of points in the plane
is given and the vertices of sub-regions must match the
given set. This can be achieved in several ways, one of
the possible triangulations is the Delaunay triangulation
(DT).

Fig. 1 Example of path planning based on Quadtree seg-
mentation

The Delaunay triangulation assures a minimal number
of narrow triangles (with small internal angles) which
is a required property in many applications. The algo-
rithms of Delaunay triangulation are also well explored
and efficient algorithms yield computational complex-
ity of n log n where n is the number of given points.

When certain edges are fixed in advance and the rest
of the edges are determined in the DT way, the trian-
gulation is called Constrained Delaunay Triangulation
(CDT). The pre-defined edges are constraints during tri-
angulation. CDT is useful in case where there are ob-
jects in the plane which should be taken into account
during plane segmentation. This is the case when path
should be planned in a plane with obstacles.

The triangulated plane can be used for path planning in
a similar manner as the Quadtree based segmentation.
A connectivity graph is built which contains informa-
tion about the edges that can be crossed, i.e. the edges
that are do not belong to obstacles. Based on the tri-
angulation and the connectivity graph, a path can be
searched for by an A* type algorithm. A correspond-
ing example for the same environment configuration as
in Figure 1 is shown in Figure 2. The additional thin
edges drawn within the triangles show the alternative
paths explored by the algorithm. It can be observed that
the built-in heuristic helps the algorithm to search only
a part of the whole space.

2.3 Path smoothing and shortening

As can be observed from in Figures 1 and 2 the obtained
path passes through centers of the cells in quadtree
space representation or crosses midpoints of the trian-
gle edges in triangulation. None of the two approaches
gives a smooth or straight path. The path is cornered
even in the areas with no obstacles, which is not desired
from the practical point of view, since the movement of

Fig. 2 Example of path planning based on triangular
segmentation

Fig. 3 Example of the optimal path (thick dark line) de-
termination inside the corridor (thin lines) obtained by
A* path finding algorithm and quadtree space represen-
tation.

an object within the virtual environment would be un-
natural in such cases.

This can be improved by considering the fact that the
array of cells which are crossed by the calculated path
actually defines a channel between the starting and the
target point. This channel will be termed a path corridor
and consists of a set of neigbouring square shaped cells
when using quadtrees. When using CDT the corridor
consists of a set of neighbouring triangular cells.

In both cases, the path within the corridor can be opti-
mized by applying the funnel algorithm [5], which finds
the shortest path within the corridor. The basic steps of
the algorithm are briefly described as follows:

• The corridor is defined by two sets of points: a set
of points defining the upper corridor border and
a set of points defining the lower corridor border.
In case of quadtree representation, the size of the
neigbouring cells may differ, and in such a case
only the overlapping part of the edges between the
two cells is considered when defining lower and
upper corridor border (see Figure 3). In case of
triangulation the corridor border follows the edges
of participating triangles.

• The start and the target point are linked to the up-
per and lower corridor border by additional edges.

• Let p be the starting point and let u and v be the
points on the upper and lower border of the corri-
dor, respectively. The shortest path from p to u and
from p to v (not leaving the corridor) may overlap
up to some point a. At a the paths diverge and are
concave until they reach u and v. The a is called

Fig. 4 Example of the optimal path (thick dark line) de-
termination inside the corridor based on the triangular
representation.

apex and the region delimited by path segments
from a to u, a to v and uv segment is the funnel.

• The algorithm iteratively adds points on the cor-
ridor borders narrowing the funnel and discard-
ing the points falling out of the narrowed funnel.
When the top of the funnel shrinks down to a line,
the shrunk part of the funnel defines a new seg-
ment of the shortest path and the new apex is set at
the end of the new segment. The procedure stops
when the target is reached. For more details, see
[5].

For the example of Figure 1 the determined corridor and
obtained shortest path within the corridor are given in
Figure 3.

Similarly, the planned path from Figure 2 for the trian-
gular representation is improved by funnel algorithm as
shown in Figure 4.

2.4 Experimental results

The initial requirement of this investigation was to de-
termine a path planning method which would enable
fast, real-time path planning for moving objects within
the virtual environments. The primary application area
are various training simulators. Real-time in this case
means a time, which is short enough not to be perceived
by a human as an unrealistic behaviour of the moving
object. Furthermore, we limited our investigation to sit-
uation with static obstacles, e.g. buildings in the area
which is crossed by autonomous vehicles.

All mentioned algorithms were implemented in Matlab
m-code and both segmentation methods were tested in
combination with environments of different complexi-
ties.

Tab. 1 Computation times - quadtrees

Environment size 10 x 10 m, maximal obstacle size 1 x 1 m

Nobst MinDim

[m]

Ncells tQT

[s]

tA*

[ms]
� A*

[ms]

tCO

[ms]
�CO

[ms]

tFU

[ms]
�FU

[ms]

10 10/32 273 0.2 9 6 4 2 6 3

10/64 577 0.5 11 6 2 1 4 2

10/128 1301 1.0 12 11 2 1 4 2

20 10/32 405 0.4 12 7 4 2 6 3

10/64 877 0.8 11 8 3 1 5 2

10/128 2189 1.8 14 12 3 1 5 2

50 10/32 797 1.0 13 9 4 1 6 2

10/64 1921 2.6 23 23 3 2 5 2

10/128 4817 6.2 49 56 4 3 7 4

100 10/64 3345 6.0 47 37 5 3 9 5

10/128 9577 16.7 83 114 4 3 7 4

Environment size 100 x 100 m, maximal obstacle size 5 x 5 m

100 100/256 12265 25 196 192 5 2 8 4

Tab. 2 Computation times - triangulation

Environment size 10 x 10 m, maximal obstacle size 1 x 1 m

Nobst MaxDim

[m]

Ncells tQT

[s]

tA*

[ms]
� A*

[ms]

tCO

[ms]
�CO

[ms]

tFU

[ms]
�FU

[ms]

10 / 82 0.2 35 22 / / 4 7

1.25 244 0.4 63 54 / / 0 0

0.67 594 1.3 147 169 / / 0 0

0.4 1434 6.6 369 350 / / 14 6

20 / 168 0.3 53 36 / / 6 8

1.25 328 0.6 96 67 / / 0 0

0.67 678 1.7 160 145 / / 6 8

0.4 1518 6.0 465 447 / / 10 8

50 / 432 0.9 107 36 / / 6 8

1.25 606 1.6 133 91 / / 4 7

0.67 956 3.3 348 280 / / 8 8

0.4 1796 10.1 797 539 / / 12 7

100 / 958 3.5 199 88 / / 6 8

1.25 1076 4.0 217 136 / / 8 8

0.67 1426 6.2 348 188 / / 6 8

0.4 2266 13.8 687 513 / / 10 8

Environment size 100 x 100 m, maximal obstacle size 5 x 5 m

100 / 838 2.8 352 220 / / 10 8

Tables 1 and 2 show results of a set of experiments with
varying environment size and varying number of obsta-
cles within the environment on a 2.4 GHz PC. Within
the tables, the first column shows the number of ob-
stacles, next is the min/max size of segmentation cells,
Ncells is the number of cells after the segmentation,
tQT and tDT are the segmentation computing times,
and the remaining columns show computing times and
corresponding standard deviation of path search algo-
rithm, corridor boundaries calculation, and the funnel
algorithm, respectively. The computing times were ob-
tained by eight consequent runs of the path planning
algorithm with different start and target points.

The obtained results show that both methods can be
used for path planning in real-time for moderately com-
plex environments provided the space segmentation is
done in advance. So only the path search, corridor cal-
culation, and funnel algorithm need to be computed in
real-time.

The drawbacks of the two segmentation approaches are
two-fold. On the one hand, the paths are not smooth but
consist of straight line segments, and on the other hand,
the resulting paths often follow the edges of the obsta-
cles, which is not realistic. Therefore an alternative way
of path planning was considered, which is described in
the next section.

3 Fast marching method based path plan-
ning

The Fast marching method (FMM) is based on numer-
ical analysis of viscous matter and is a method of nu-
merical solving a particular form of nonlinear partial
equation, i.e. an Eikonal equation.

Simplified, the method gives a description of wavefront
propagation through nonhomogeneous medium, where
the propagation is represented by a wavefront arrival
time for every point in the space.

When the propagation velocity for a point in space is
defined by F (which is always non-negative), the ar-
rival time function T is determined by the solution of
equation

|∇T |F = 1 (1)

at given border conditions, i.e. at a condition of zero
value of T in the starting point. If F depends only
on space coordinates, the above equation is an Eikonal
equation.

The numerical solution of the equation is based on
space grid, approximation of the gradient by the val-
ues in the neighbouring points and an efficient strategy
of point calculation order.

Figure 5 shows a point in a 2D grid and its neihbour-
ing points. In 2 dimensions the gradient |∇T (x, y)| =
|∇T (i, j)|, where x = i∆x in y = j∆y can be substi-
tuted by an approximation (2)

(
max(D−x

ij T, 0)2 + min(D+x
ij T, 0)2+

max(D−y
ij T, 0)2 + min(D+y

ij T, 0)2

)
=

1
F 2

ij

(2)
where

D−x
ij T =

Ti,j − Ti−1,j

∆x
(3)

D−y
ij T =

Ti,j − Ti,j−1

∆y

T(i,j)
T(i-1,j) T(i+1,j)

T(i,j+1)

T(i,j-1)

Fig. 5 A point in the grid and its neighbours

and

D+x
ij T =

Ti+1,j − Ti,j

∆x
(4)

D+y
ij T =

Ti,j+1 − Ti,j

∆y

In [6] is proposed that the gradient is substituted by a
simpler, less accurate approximation

max(D−x
ij T,−D+x

ij T, 0)2 +

max(D−y
ij T,−D+y

ij T, 0)2 =
1

F 2
ij

(5)

Considering (3) and (4) the last equation can be modi-
fied to

max

(
Ti,j −min(Ti−1,j , Ti+1,j)

∆x
, 0

)2

+

max

(
Ti,j −min(Ti,j−1, Ti,j+1)

∆y
, 0

)2

=
1

F 2
ij

(6)

By setting new labels

T = Ti,j

T1 = min(Ti−1,j , Ti+1,j)
T2 = min(Ti,j−1, Ti,j+1)

(7)

the equation becomes

max

(
T − T1

∆x
, 0

)2

+ max

(
T − T2

∆y
, 0

)2

=
1

F 2
ij

(8)

Assuming F is always positive, T is monotonically in-
creasing. The solution in a given point is only influ-
enced by solution values in those points where the so-
lution value is smaller. The fast marching method is
based on the information propagation in one direction,
from smaller values of T to larger values.

3.1 FMM method and path planning

The method can be easily applied to shortest path plan-
ning as the time of arrival into a point in the space is al-
ways the earliest possible time, and the known obstacles
are simply taken into account during the calculation of
the wavefront propagation. It suffices to set the propa-
gation velocity to zero for any point inside the obstacle,
which prevents wavefront from entering.

Once the arrival time function is calculated, the shortest
path can be reconstructed by following the largest gra-
dient. This can be done by simple Euler’s method or by
more precise Heun’s method. The path can be calcu-
lated in both directions, i.e. from the wavefront starting
point into any target point in the space or reversed, from
a set of starting points to a fixed target point, which is
the wavefront starting point. Such an example is shown
in Figure 6.

Fig. 6 Example of shortest path planning by FMM
method and a fixed target point

3.2 Smooth path planning and FMM method

The arrival time function calculated by FMM method
serves as a potential field which directs the moving ob-
ject toward the target point. If additional information is
included into this field, this can influence the calculated
path. Such an information is the information about the
distance to the obstacles. This way the path may be
pushed away from the borders of the obstacles.

The distance to the obstacles can be included by the use
of Extended Voronoi Transformation (EVT), which is
used in digital image processing (and called Distance
Transform therein). If EVT information is included
into FMM based path planning, the obtained paths are
driven away from the obstacles and smooth at the same
time. An example is shown in Figure 7.

Fig. 7 Example of smooth path planning by FMM
method and a fixed target point

4 The combined approach

While in general the FMM method gives better results
in terms of optimality of the planned paths and can
also be adapted to smooth down the paths as described
above, its limitation in the substantial computational
burden compared to segmentation based methods. E.g.
in the example shown above the size of environment
was 10 × 10 m, grid points were 0.02 m apart, the
EVT calculation took approx. 600 s, but fortunately
needs to be performed only once for a fixed configura-
tion of obstacles. FMM algorithm takes around 30 s and
then backtracking by Heun’s method another 5 to 10 s,
depending on the step size. All times were obtained
on a 2.4 GHz PC by implementation of algorithms in
Matlab m-code. The code is not optimal, nevertheless,
the listed computation times indicate that the use of the
method in real-time is not feasible for any complex en-
vironment.

The computational time for the calculation of the ar-
rival time function strongly depends on the length of the
propagating wavefront. It is relatively short when the
wavefront can only advance in a narrow corridor. This
implies the feasibility of a combined approach, where
segmentation of the space is first applied to coarse ini-
tial path planning, then a suitable corridor is defined
within which a finer path planning is performed by the
FMM method.

The corridor used for FMM can be exactly the same
that was used for the funnel algorithm. Given a set
of obstacles, the EVT transformation is computed first.
This could be done for points within the corridor only,
but also the obstacles away from the corridor should
be taken into account. Due to large computing time of
the EVT it is more convenient to compute it for all the
points in advance and then mask the points outside of
the corridor by setting their EVT value to zero.

More precisely, the EVT transformation operates on
a bitmap image and calculates the Euclidean distance
from every pixel to the nearest pixel carrying a specific
property, in our case a pixel that belongs to the obsta-
cle. This is a concept related to Voronoi graph, with the
difference that the information is attached to every pic-
ture element and not only the points on the edges of the
Voronoi cells. A number of EVT algorithms calculate
the Voronoi diagram as an intermediate step.

By using the EVT information during the FMM based
path planning the planned path is automatically pushed
away from obstacles and smoothed at the same time be-
cause the path does not follow the obstacle edges as it
may happen with funnel algorithm.

In [3] the authors suggest to include the distance to
the obstacles as a velocity parameter when calculat-
ing the wavefront propagation. This makes analogy
to propagation of light ray through the medium with
non-homogenous refractive index. The light in such a
medium is not refracted but bent smoothly. For the path
planning the distance is not used directly, but is trans-
formed analogously to electric potential by a logarith-

mic function, e.g. [3]:

Fi,j = c1log(Ri,j) + c2 (9)

where Ri,j stands for the distance of point (i, j) to the
nearest obstacle. For the purpose of the presented study
this function was further modified to

Fi,j =
{

log(Ri,j

∆x), log(Ri,j

∆x) > 0
0, log(Ri,j

∆x) <= 0
(10)

Equality ∆x = ∆y is assumed, and the proposed func-
tion enables balanced results with various distances of
points in the grid. At the same time the function is con-
sistent with the approach used by FMM, where the in-
terior of obstacles is indicated by adjoining the corre-
sponding grid elements by zero velocity of wavefront
propagation.

With the described calculation of EVT the proposed
path planning method can be summarized in the fol-
lowing steps:

• The QT or CDT segmentation of the environment
with known obstacle positions is calculated.

• The environment is covered by a grid of points and
the EVT transformation is calculated interpreting
every point of the grid as a pixel of the image.

• A start and a target points are chosen and a cor-
responding path is planned by an A* type search
algorithm. As a result, a path and a correspond-
ing set of segmentation cells are obtained, the
cells defining a corridor surrounding the calculated
path.

• The information about the corridor boundaries is
used to adjust EVT transformation by setting the
calculated values of the EVT to zero for any point
outside the corridor.

• The newly obtained EVT is used to parametrize
the FMM based path search algorithm to obtain a
smooth suboptimal path within the corridor.

If new path has to be calculated for another set of points,
it suffices to repeat only the last three steps of the pro-
posed procedure.

Some preliminary results regarding computational
complexity of the proposed method are shown in Ta-
ble 3 and 4. The first table shows the results obtained
by the combination of quadtrees and FMM method
while the second table shown the results obtained by
the combination of constrained Delaunay triangulation
and FMM method.

The number of obstacles Nobst is shown, the min/max
size of segmentation cells, raster size used by FMM
method, computing time of EVT transformation, and
the remaining columns show the computation time
needed for adjusting EVT to the given corridor (tEC),
for calculation of arrival time function within the corri-
dor by FMM method (tFMM), and for calculation of
the path by following the largest gradient by Heun’s
method (tH). By the last part, the integration step
size was chosen according to the raster size: step =
0.1/raster

Fig. 8 Example of the path planning in triangular space
segmentation – result of path search, the corridor and
result of funnel algorithm.

Tab. 3 Combined method computation times - quadtrees

Environment size 10 x 10 m, maximal obstacle size 1 x 1 m

Nobst MinDim

[m]

raster

[m]

tEVT [s] tEC [s] tFMM

[s]

tH

[s]

100 10/128 0.02 612 9.4 1.0 21.5

Tab. 4 Combined method computation - triangulation

Environment size 10 x 10 m, maximal obstacle size 1 x 1 m

Nobst MaxDim

[m]

raster

[m]

tEVT [s] tEC [s] tFMM

[s]

tH

[s]

100 1
0.05 96 2.5 0.42 4.1

0.02 612 12.1 2.6 22.5

5 Conclusions
The results show the feasibility of the proposed method
and confirm the significant reduction in computation
times of FMM in the corridor compared by the FMM
for the whole search space. Due to rather small size
of the minimal cells of the quadtree a small raster size
must be chosen in this case to avoid numeric prob-
lems when following the gradient in the narrow parts
of the corridor. This indicates that smaller granulation
of quadtree is not necessary advantageous. Besides, the
larger granulation yields more room in the corridor to
FMM to smooth down the planned path. On the other
hand, larger granulation prevents the path planning al-
gorithm to draw the planned path over the narrow pas-
sages among obstacles. The resulting paths may there-
fore not be optimal in terms of their lengths.

Due to generally wider corridors obtained by triangu-
lation compared to quadtree based path planning here
also a larger raster size can be chosen, which signifi-
cantly reduces the required computation times. The tri-
angulation based path planning algorithm always tries
to make the planned path shortest, even in cases where
it has to pass narrow passages among obstacles. If the
chosen raster is to large, however, the FMM algorithm
may not succeed in calculating the time arrival function
in such a passage.

Fig. 9 Example of the path smoothing in triangular
space segmentation – arrival time function within the
corridor and resulting path obtained by the FMM algo-
rithm).

6 References
[1] Baerentzen, J.A., On the Implementation of Fast

marching Methods for 3D Lattices, Technical Re-
port IMM-REP-2001-13, Technical University of
Denmark, 2001.

[2] Farag, A.A., and M.S. Hassouna, Theoreti-
cal Foundations of Tracking Monotonically Ad-
vancing Fronts Using Fast Marching Level
Set Method, Technical report, University of
Louisville, 2005.

[3] Garrido, S., L. Moreno and D. Blanco, Explo-
ration of 2D and 3D Environments using Voronoi
Transform and Fast Marching Method, Journal of
Intelligent and Robotic Systems, vol. 55, str. 55–
80 (2009).

[4] Hongyang, Y, H. Wang, Y. Chen, D. Dai, Path
Planning Based on Constrained Delaunay Trian-
gulation, Proceedings of the 7th World Congress
on Intelligent Control and Automation June 25 -
27,2008, Chongqing, China.

[5] Kallmann, M., Path Planning in Triangulations,
Proceedings of the Workshop on Reasoning, Rep-
resentation, and Learning in Computer Games, In-
ternational Joint Conference on Artificial Intel-
ligence (IJCAI), Edinburgh, Scotland, July 31,
2005, 49-54.

[6] Sethian, J.A., Fast Marching Methods, SIAM Re-
view, vol. 41, no. 2, str. 199–235 (1999).

[7] Botea, A., Mller, M., Schaeffer, J., Near optimal
hierarchical path-finding, Journal of Game Devel-
opment, vol. 1, pp. 7-28, (2004).

[8] Davis, I., Warp speed: Path planning for star
trek: Armada, AAAI Spring Symposium on AI and
Interactive Entertainment, AAAI Press, Menlo
Park, CA., (2000).

