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Abstract  

In this paper we deal with a process of building a Coloured Petri net model of a 
parallel raytracing implementation, developed at the home institution of authors. 
The model has been used to evaluate possible parallel raytracing strategy 
improvements by means of simulation-based performance analysis. Here we 
present a basic Place-Transition net model, which captures all crucial properties 
of the raytracing implementation. We demonstrate how structural properties of 
Petri nets, namely place and transition invariants, and proof obligations of B-
Method can be used to verify that the basic model has desired properties and is 
deadlock free. The verification is performed using available tools, including our 
original ones and uses original theoretical results regarding transformations 
between Petri nets and specifications in B-Method. Finally, we show how the 
CPN model can be designed on the basis of the Place-Transition net model. 
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1 Introduction 

3D scene raytracing belongs to the set of very time-
consuming tasks. Fortunately the task can be relatively 
easily decomposed and computed in a parallel 
environment. In principal, there are two methods of 
decomposing a raytracing computation: demand-
driven and data-driven. Our computer graphics 
research group also developed a parallel raytracing 
solution [14], which implements the demand-driven 
method and uses a multicomputer (cluster) 
environment. For the raytracing itself, a freeware 
raytracer Pov-ray [18] is used. 

There are two types of computational nodes in our 
implementation: master (one) and slave nodes. All the 
nodes perform raytracing jobs, but the master also 
manages the whole process, allocates jobs and 
interacts with the user. The scene raytracing proceeds 
as follows: First the master node sends a 3D scene 
data to each slave node. Then the master divides the 
final image area into rectangular tiles and orders each 
node to process (raytrace) a tile. When a slave node 
finishes tile raytracing, it notifies the master. Then the 
master downloads the raytraced tile and orders the 
slave to process another one. The communication with 
slaves has a higher priority for the master than its 
raytracing job. After processing of all tiles the master 
assembles the final image. 

To improve an effectiveness of our implementation 
we proposed several improvements aimed at a 
reduction of master/slave communication delays. As 
we feel that it would be very time and money 
consuming to test intended improvements using real 
software and hardware, we evaluated the 
improvements using simulation-based performance 
analysis on a Coloured Petri net (CPN) model. We 
opted for CPN and its supporting tool, called CPN 
tools [7], [17], because they provide a sufficient 
modelling power, probability functions and time 
concept. 

In this paper we focus on the process of building the 
simulation model itself. We start with a basic Place-
Transition (PT) net model, which captures all crucial 
properties of our raytracing implementation and 
intended improvements. Then we verify the PT net 
model using structural properties of PT nets and 
adequate proof obligations of an equivalent model in 
the language of B-Method. Finally, the PT net model 
is “updated” to a timed CPN model, where all details 
of the raytracing process, including timing, are added. 

2 PT net model  

The Place-Transitions (PT) nets, sometimes called 
simply Petri nets, can be regarded as the best-known 
class of low-level Petri nets. They are able to naturally 
express non-determinism, parallelism and concurrency 
and offer easy to understand graphical notation and 
possibility of structural analysis. Basic information 

about Petri nets and their properties can be found in 
[5], [12]. 

The basic PT net model of our raytracing 
implementation is shown in Figure 1.  It represents a 
scenario with 10 computational nodes and the image 
area divided into 750 tiles.  Its initial marking means 
that a new scene is ready to be processed (a token in 
the place newScene). A number of tokens in nodesM 
and nodesS is a number of free master and slave 
nodes. A firing of sendScene represents a sending of 
the 3D scene data to each slave node. Tokens in tiles 
are scene tiles that have not yet been processed. 
Processing of a new tile starts by firing of 
selectNewTileS (on a slave) or selectNewTileM (on the 
master). The firing also reserves a node by removing a 
token from nodesS or nodesM. The fact that the master 
is rendering is indicated by a token in masterRend. 
Raytracing on a slave can be successful (firing of 
sucRtrStartS) or unsuccessful (unsucRtrStart). On the 
master it can be only successful  (sucRtrStartM). 
Firing of freeMrNode finishes tile raytracing on the 
master  - it sends the tile to computedTiles and 
releases the master node. There are two possible cases 
after a tile is processed on a slave node: If the master 
is free, then it starts downloading the computed tile 
(firing of sendTileSl_Mf). A firing of freeSlNode_Mf 
finishes the downloading. In the second case master 
interrupts rendering and downloads the tile 
(sendTileSl_Mr, freeSlNode_Mr).  An unsuccessful 
tile processing (started by unsucRtrStart) is caused by 
a slave node failure. Then firing of returnTile occurs 
when the master notes that the slave is not responding 
(the response of nodes is checked regularly). After this 
the tile is marked as unprocessed (i.e. moves to the 
place returnedTiles) and can be raytraced again by 
firing of selectRetTileM or selectRetTileS. The slave 
node then recovers from failure by firing of 
recoverNode. 

 

2.1 Invariant analysis 

While PT nets don’t offer great modelling power, they 
have nice analytical properties. S-invariants express 
invariant properties of modelled system state (net 
marking) and T-invariants represent transition 
sequences whose firings have no effect on the net 
marking. For the invariant analysis of the PN net 
model we used the TIme petri Net Analyzer (TINA) 
[3], [16] toolbox and our own mFDTE/PNtool [6]. 

From the T-invariants computed we get that there are 
fireable sequences, consisting of all transitions, which 
lead us from the initial marking back to the initial 
marking. 

S-invariants found allowed us to verify important 
properties of the model. Some of equations based on 
them are listed in Tab. 1. 

 



 

 

 

Fig. 1 Basic PT net model of parallel raytracing. 
 

Tab. 1 Equations derived from S-invariants 

I1  commTileSl_Mf + commTileSl_Mr + failedNodes 
+ nodesS + prepTileS + raytrTilesS + 
unscRaytrTiles =9 

I2 commTileSl_Mf + commTileSl_Mr + 
computedTiles + 750*newScene + prepTileM + 
prepTileS + raytrTilesM + raytrTilesS + 
returnedTiles + tiles + unscRaytrTiles = 750 

I3 commTileSl_Mf + nodesM + prepTileM + 
raytrTilesM = 1 

I4 commTileSl_Mf + commTileSl_Mr + masterRend + 
nodesM = 1 

 

Names of the places in the equations stand for the 
markings of corresponding places. The equation I1 
proves correct distribution of slave nodes, I3 and I4 
proves the same for the master. I2, among others, 

states that tiles are processed only after the scene data 
are send to slave nodes: If (marking of) newScene=1, 
marking of all other involved places is 0. It also states 
that while there is some tile processed (i.e. marking of 
some other place than newScene is greater than 0), we 
cannot start to process a new scene (because 
newScene=0). 

S-invariants obtained also provided indispensable aid 
for deadlock freeness proof. 

2.2 Deadlock freeness proof with B-Method 

The B-Method [1], with its B-Abstract Machine 
Notation (B-AMN) specification language, is a state-
based model-oriented formal method. It offers a well-
defined development process, which allows to specify 
a software system as a collection of so-called B-
machines and to refine such an abstract specification 
to a concrete one. A consistency of the abstract 
specification and correctness of refinement are 



verified by means of proof obligations (PObs). There 
is an industrial tool, called Atelier B [15], which 
supports the whole development process and includes 
prover for PObs. The tool is available for free. 

In general, the B-machine consists of a set of state 
variables (clause VARIABLES), an invariant to 
restrict the variables (clause INVARIANT), an initial 
operation to establish an initial state 
(INITIALISATION) and a set of operations to modify 
the variables (OPERATIONS). There are also other 
clauses intended for additional assertions and data 
components (parameters, sets and constants). The 
PObs of the machine are used to prove that the initial 
operation establishes the invariant and operations of 
the machine maintain the invariant. 

In [9] a theory of translations between B-AMN and 
Petri nets has been introduced which makes it possible 
to transform any PT net or Evaulative Petri net (a 
Turing-powerful class of Petri nets) into the 
computationally equivalent B-machine and almost any 
B-machine into the equivalent CPN. A basic idea of 
the translations is to link together similar behavioural 
concepts of both methods. Therefore places of PN are 
transformed to state variables of B-machine, initial 
marking to initialisation operation and transitions and 
adjacent arcs to operations. 

Here we used the translation of PT net to a bisimilar 
B-machine to prove a deadlock freeness of our basic 
model. The machine, named parRaytrBModel, has been 
generated by mFDTE/PNtool and a part of it is shown 
in Fig. 2. To make the machine more general we 
replaced number of slave nodes and tiles by 
corresponding constants tilesNo and sLnodesNo. 

Values of machine variables are naturals (N) and 
correspond to markings of the PT model (same names 
as places). Similarly, operations correspond to the 
transitions. The operations consists of a guarded 
command “SELECT P THEN S END”, which means 
“do S, if P holds”. If P doesn’t hold, then the 
command is not feasible. Operator “||” stands for 
parallel composition, so “S1|| S2” means “do S1 and 
S2 simultaneously”. To use the B-machine obtained to 
check a deadlock freedom of the PT model, we add a 
predicate saying “there must be at least one feasible 
operation in each state of the machine” and prove the 
PObs. The predicate has the form (1). 

(newScene>=1) or (nodesM>=1 & tiles>=1)  
or (nodesS>=1 & tiles>=1) or …  
or (computedTiles>=tilesNo) 

(1) 

We managed to prove the deadlock freeness in Atelier 
B but only after addition of other invariant conditions 
(Fig. 2), equivalent to the S-invariant equations for the 
PT model and utilizing the predicate prover of the 
tool. 

It should be noted that we are not the only ones who 
came with an idea of Petri net analysis by means of B- 

 

MACHINE parRaytrBModel 
 
ABSTRACT_CONSTANTS  
  tilesNo, sLnodesNo 
 
PROPERTIES  
  tilesNo:N & tilesNo>0 & sLnodesNo: N & sLnodesNo>0 
  
VARIABLES 
   newScene, nodesM, nodesS, tiles, ..., computedTiles 
 
INVARIANT 
   newScene:N & nodesM:N &   nodesS:N & tiles:N & ...  
   & computedTiles:N  
  & /*I1 S-invariant*/ 
   commTileSl_Mf + commTileSl_Mr + failedNodes +  
   nodesS + prepTileS + raytrTilesS + unscRaytrTiles  
   =sLnodesNo 
  & /*I2 S-invariant*/ 
   commTileSl_Mf + commTileSl_Mr + computedTiles +  
   newScene*tilesNo +… + unscRaytrTiles = tilesNo  
  & /*I3 S-invariant*/ 
   commTileSl_Mf + nodesM + prepTileM + raytrTilesM=1    
  & /*I4 S-invariant*/ 
   commTileSl_Mf + commTileSl_Mr + masterRend + 
   nodesM = 1 
  & /*I5 S-invariant*/ 
   commTileSl_Mf + commTileSl_Mr*2 + computedTiles +  
   masterRend+newScene*tilesNo+prepTileS+raytrTilesS + 
   returnedTiles + tiles + unscRaytrTiles = tilesNo 
  &  /*Deadlock freeness condition */ 
   (newScene>=1) or (nodesM>=1 & tiles>=1) or 
   (nodesS>=1 & tiles>=1) or…  
   or (computedTiles>=tilesNo)) 
      
INITIALISATION 
  newScene:=1 || nodesM:=1 || nodesS:=sLnodesNo ||  
  tiles:=0 || ... || computedTiles:=0  
 
OPERATIONS 
op_sendScene= 
      SELECT newScene>=1 THEN 
       newScene:=newScene - 1 || tiles:=tiles + tilesNo 
      END; 
op_selectNewTileM= 
      SELECT nodesM>=1 & tiles>=1 THEN 
       masterRend:=masterRend + 1 || nodesM:=nodesM  
       - 1 || prepTileM:=prepTileM + 1 || tiles:=tiles - 1 
      END; 
op_selectNewTileS= 
      SELECT nodesS>=1 & tiles>=1 THEN 
       nodesS:=nodesS - 1 || prepTileS:=prepTileS + 1 ||  
        tiles:=tiles - 1 
      END; 
 

… 
 

op_completeScene= 
      SELECT computedTiles>=tilesNo THEN 
       computedTiles:=computedTiles - tilesNo || 
       newScene:=newScene + 1 
      END; 
END 
 

 

Fig. 2 Fragment of B-machine generated from the 
basic PT net model, with extended invariant clause. 



Method. There is also another approach [2], where not 
only the system modelled but also the whole definition 
of Petri net is captured in B-Method. We opted for a 
more natural translation, where a link between PT net 
and B-AMN models remains clear and it is, for 
example, easy to import S-invariant equations from 
PT net to a corresponding B-Machine. There is also no 
evidence that the transformation proposed in [2] has 
been implemented. 

 A similar deadlock freeness condition is also included 
in Event-B, an evolution of B-Method, as one of the 
proof obligations [11].  

3 Building up CPN model 

After verification of the basic model its 
“transformation” to CPN can be performed. The CPN 
model is shown in Fig. 3 and its detailed description 
can be found in the paper [10], available online. The 
transformation has been done by hand and we tried to 
keep it as “conservative” as possible to retain the 
properties proved for the basic net. For the most of the 
model we just transformed undistinguishable tokens of 
the basic net to structured ones. These structured 
tokens carry all the information needed for precise 
simulation, such as complexity of a tile and type of 

 

 

Fig. 3 Timed CPN model of parallel raytracing. 



the node where the tile will be raytraced, raytracing 
job duration and communication delays. The 
corresponding arc expressions have been added to 
compute data carried by tokens. High-level nature of 
CPN also allowed a partial folding and thus 
simplification of the net structure: all places and 
transitions of the net that differ only in suffix (S or M) 
merged to one node (i.e. sucRtrStartS and 
sucRtrStartM to sucRtrStart or nodesM and nodesS to 
freeNodes). Of course, this folding resulted in addition 
of new arc expressions and transition guards. Folded 
places and transitions are rendered in blue in Fig 3.  

We illustrate these changes on a part responsible for 
the start of tile raytracing: In the basic model the 
choice between successful and unsuccessful raytracing 
start is simply non-deterministic. But in the CPN 
model the choice depends on the value of the field 
cSuc of a data structure carried by a token t that 
represents a tile to be raytraced. A value of cSuc is set 
by the function setSuc_nTp when the tile is selected. 
Because the token data structure also carries 
information about type of the node where the tile will 
be processed, we no longer need separate places and 
transitions for slave and master (setSuc_nTp ensures 
that cSuc will be true in the case o master node). We 
can say that the transformation to CPN limited the 
non-determinism by taking simulation-related details 
into consideration, but the “token flow” is essentially 
the same. A number of not-yet raytraced tiles is also 
represented differently: In the PT net it is simply the 
marking of tiles (tilesDist). In the CPN it is the value 
of the field remTiles of a record-type token td, stored 
in tilesDist. The token td also carries information 
about a distribution of the scene complexity among 
tiles. 

We can also see two new parts (rendered in brown) 
added to the CPN model: 

1. delayRendMr, commTime and adjacent arcs: This 
part ensures that delay, caused by a 
communication with slaves, will be added to a 
raytracing job duration on the master node. 

2. scStartTime and adjacent arcs: The place 
scStartTime stores the time of raytracing job 
start. The time stored is then subtracted from the 
simulation time when completeScene fires and 
stored to a text file for further processing. 

The CPN model has been used to evaluate possible 
improvements of our current parallel raytracing 
implementation. The improvements aimed at 
reduction of the communication delay by adding some 
memory buffers to the master or slave nodes. 
Obtained simulation results, presented in [10], shown 
that the improvements are not worth of an 
implementation. But to be sure in this case, we plan to 
perform other “large-scale” simulation experiments, 
utilizing our newly developed simulation automation 
tool for CPN and CPN tools. 

4 Conclusion 

In this paper we demonstrated how Petri nets and B-
Method can be used to design and verify a parallel 
raytracing strategy model. We shown the verification 
of a PT net model that served as a basis for building a 
high-level timed CPN model, used for simulation-
based performance analysis.  

While the verification of the PT net model has been 
performed using automated tools and formal theory, 
the transformation, or refinement, to the CPN model 
has been done by hand. Therefore we intend to 
prepare a tool which will partially automate the 
transformation by utilizing known approaches to 
transformation of ordinary Petri net to CPN (including 
folding) [4] and refinement of Petri nets [13]. 

We also intent to extend our Petri net to B-machine 
translation to CPN. This can be done by adopting a 
method similar to that of [8], where markings are 
translated to set variables and transition guards and 
expressions on adjacent arcs to preconditions and 
generalised substitutions of corresponding B-machine 
operations. Here a translation of B-AMN expressions 
to CPN expressions, defined as a part of [9] can be 
helpful. 

The work presented is supported by VEGA grant 
project No. 1/0646/09: “Tasks solution for large 
graphical data processing in the environment of 
parallel, distributed and network computer systems”. 
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