
BUILDING PARALLEL RAYTRACING
SIMULATION MODEL WITH PETRI NETS AND B-

METHOD

Štefan Korečko, Branislav Sobota

Technical University of Košice, Faculty of Electrical Engineering and Informatics,
041 20 Košice, Letná 9, Slovakia

stefan.korecko@tuke.sk (Štefan Korečko)

Abstract

In this paper we deal with a process of building a Coloured Petri net model of a
parallel raytracing implementation, developed at the home institution of authors.
The model has been used to evaluate possible parallel raytracing strategy
improvements by means of simulation-based performance analysis. Here we
present a basic Place-Transition net model, which captures all crucial properties
of the raytracing implementation. We demonstrate how structural properties of
Petri nets, namely place and transition invariants, and proof obligations of B-
Method can be used to verify that the basic model has desired properties and is
deadlock free. The verification is performed using available tools, including our
original ones and uses original theoretical results regarding transformations
between Petri nets and specifications in B-Method. Finally, we show how the
CPN model can be designed on the basis of the Place-Transition net model.

Keywords: Petri nets, B-Method, deadlock freeness, simulation-based performance
analysis, raytracing

Presenting Author’s biography

Štefan Korečko was born on July 13, 1978. In 2001 he graduated (MSc.)
with honours at the department of Computers and Informatics of the
Faculty of Electrical Engineering and Informatics at Technical University
(DCI FEEI TU) in Košice. He defended his PhD thesis in the field of
computer devices and systems in 2006. The title of his thesis was
"Integration of Petri Nets and B-Method for the mFDT Environment".
Since 2004 he is working as an assistant professor at the DCI FEEI TU in
Košice. His scientific research is focused on formal methods, Petri nets
and B-Method in particular, their integration and use in software
development and modelling and simulation.

1 Introduction

3D scene raytracing belongs to the set of very time-
consuming tasks. Fortunately the task can be relatively
easily decomposed and computed in a parallel
environment. In principal, there are two methods of
decomposing a raytracing computation: demand-
driven and data-driven. Our computer graphics
research group also developed a parallel raytracing
solution [14], which implements the demand-driven
method and uses a multicomputer (cluster)
environment. For the raytracing itself, a freeware
raytracer Pov-ray [18] is used.

There are two types of computational nodes in our
implementation: master (one) and slave nodes. All the
nodes perform raytracing jobs, but the master also
manages the whole process, allocates jobs and
interacts with the user. The scene raytracing proceeds
as follows: First the master node sends a 3D scene
data to each slave node. Then the master divides the
final image area into rectangular tiles and orders each
node to process (raytrace) a tile. When a slave node
finishes tile raytracing, it notifies the master. Then the
master downloads the raytraced tile and orders the
slave to process another one. The communication with
slaves has a higher priority for the master than its
raytracing job. After processing of all tiles the master
assembles the final image.

To improve an effectiveness of our implementation
we proposed several improvements aimed at a
reduction of master/slave communication delays. As
we feel that it would be very time and money
consuming to test intended improvements using real
software and hardware, we evaluated the
improvements using simulation-based performance
analysis on a Coloured Petri net (CPN) model. We
opted for CPN and its supporting tool, called CPN
tools [7], [17], because they provide a sufficient
modelling power, probability functions and time
concept.

In this paper we focus on the process of building the
simulation model itself. We start with a basic Place-
Transition (PT) net model, which captures all crucial
properties of our raytracing implementation and
intended improvements. Then we verify the PT net
model using structural properties of PT nets and
adequate proof obligations of an equivalent model in
the language of B-Method. Finally, the PT net model
is “updated” to a timed CPN model, where all details
of the raytracing process, including timing, are added.

2 PT net model

The Place-Transitions (PT) nets, sometimes called
simply Petri nets, can be regarded as the best-known
class of low-level Petri nets. They are able to naturally
express non-determinism, parallelism and concurrency
and offer easy to understand graphical notation and
possibility of structural analysis. Basic information

about Petri nets and their properties can be found in
[5], [12].

The basic PT net model of our raytracing
implementation is shown in Figure 1. It represents a
scenario with 10 computational nodes and the image
area divided into 750 tiles. Its initial marking means
that a new scene is ready to be processed (a token in
the place newScene). A number of tokens in nodesM
and nodesS is a number of free master and slave
nodes. A firing of sendScene represents a sending of
the 3D scene data to each slave node. Tokens in tiles
are scene tiles that have not yet been processed.
Processing of a new tile starts by firing of
selectNewTileS (on a slave) or selectNewTileM (on the
master). The firing also reserves a node by removing a
token from nodesS or nodesM. The fact that the master
is rendering is indicated by a token in masterRend.
Raytracing on a slave can be successful (firing of
sucRtrStartS) or unsuccessful (unsucRtrStart). On the
master it can be only successful (sucRtrStartM).
Firing of freeMrNode finishes tile raytracing on the
master - it sends the tile to computedTiles and
releases the master node. There are two possible cases
after a tile is processed on a slave node: If the master
is free, then it starts downloading the computed tile
(firing of sendTileSl_Mf). A firing of freeSlNode_Mf
finishes the downloading. In the second case master
interrupts rendering and downloads the tile
(sendTileSl_Mr, freeSlNode_Mr). An unsuccessful
tile processing (started by unsucRtrStart) is caused by
a slave node failure. Then firing of returnTile occurs
when the master notes that the slave is not responding
(the response of nodes is checked regularly). After this
the tile is marked as unprocessed (i.e. moves to the
place returnedTiles) and can be raytraced again by
firing of selectRetTileM or selectRetTileS. The slave
node then recovers from failure by firing of
recoverNode.

2.1 Invariant analysis

While PT nets don’t offer great modelling power, they
have nice analytical properties. S-invariants express
invariant properties of modelled system state (net
marking) and T-invariants represent transition
sequences whose firings have no effect on the net
marking. For the invariant analysis of the PN net
model we used the TIme petri Net Analyzer (TINA)
[3], [16] toolbox and our own mFDTE/PNtool [6].

From the T-invariants computed we get that there are
fireable sequences, consisting of all transitions, which
lead us from the initial marking back to the initial
marking.

S-invariants found allowed us to verify important
properties of the model. Some of equations based on
them are listed in Tab. 1.

Fig. 1 Basic PT net model of parallel raytracing.

Tab. 1 Equations derived from S-invariants

I1 commTileSl_Mf + commTileSl_Mr + failedNodes
+ nodesS + prepTileS + raytrTilesS +
unscRaytrTiles =9

I2 commTileSl_Mf + commTileSl_Mr +
computedTiles + 750*newScene + prepTileM +
prepTileS + raytrTilesM + raytrTilesS +
returnedTiles + tiles + unscRaytrTiles = 750

I3 commTileSl_Mf + nodesM + prepTileM +
raytrTilesM = 1

I4 commTileSl_Mf + commTileSl_Mr + masterRend +
nodesM = 1

Names of the places in the equations stand for the
markings of corresponding places. The equation I1
proves correct distribution of slave nodes, I3 and I4
proves the same for the master. I2, among others,

states that tiles are processed only after the scene data
are send to slave nodes: If (marking of) newScene=1,
marking of all other involved places is 0. It also states
that while there is some tile processed (i.e. marking of
some other place than newScene is greater than 0), we
cannot start to process a new scene (because
newScene=0).

S-invariants obtained also provided indispensable aid
for deadlock freeness proof.

2.2 Deadlock freeness proof with B-Method

The B-Method [1], with its B-Abstract Machine
Notation (B-AMN) specification language, is a state-
based model-oriented formal method. It offers a well-
defined development process, which allows to specify
a software system as a collection of so-called B-
machines and to refine such an abstract specification
to a concrete one. A consistency of the abstract
specification and correctness of refinement are

verified by means of proof obligations (PObs). There
is an industrial tool, called Atelier B [15], which
supports the whole development process and includes
prover for PObs. The tool is available for free.

In general, the B-machine consists of a set of state
variables (clause VARIABLES), an invariant to
restrict the variables (clause INVARIANT), an initial
operation to establish an initial state
(INITIALISATION) and a set of operations to modify
the variables (OPERATIONS). There are also other
clauses intended for additional assertions and data
components (parameters, sets and constants). The
PObs of the machine are used to prove that the initial
operation establishes the invariant and operations of
the machine maintain the invariant.

In [9] a theory of translations between B-AMN and
Petri nets has been introduced which makes it possible
to transform any PT net or Evaulative Petri net (a
Turing-powerful class of Petri nets) into the
computationally equivalent B-machine and almost any
B-machine into the equivalent CPN. A basic idea of
the translations is to link together similar behavioural
concepts of both methods. Therefore places of PN are
transformed to state variables of B-machine, initial
marking to initialisation operation and transitions and
adjacent arcs to operations.

Here we used the translation of PT net to a bisimilar
B-machine to prove a deadlock freeness of our basic
model. The machine, named parRaytrBModel, has been
generated by mFDTE/PNtool and a part of it is shown
in Fig. 2. To make the machine more general we
replaced number of slave nodes and tiles by
corresponding constants tilesNo and sLnodesNo.

Values of machine variables are naturals (N) and
correspond to markings of the PT model (same names
as places). Similarly, operations correspond to the
transitions. The operations consists of a guarded
command “SELECT P THEN S END”, which means
“do S, if P holds”. If P doesn’t hold, then the
command is not feasible. Operator “||” stands for
parallel composition, so “S1|| S2” means “do S1 and
S2 simultaneously”. To use the B-machine obtained to
check a deadlock freedom of the PT model, we add a
predicate saying “there must be at least one feasible
operation in each state of the machine” and prove the
PObs. The predicate has the form (1).

(newScene>=1) or (nodesM>=1 & tiles>=1)
or (nodesS>=1 & tiles>=1) or …
or (computedTiles>=tilesNo)

(1)

We managed to prove the deadlock freeness in Atelier
B but only after addition of other invariant conditions
(Fig. 2), equivalent to the S-invariant equations for the
PT model and utilizing the predicate prover of the
tool.

It should be noted that we are not the only ones who
came with an idea of Petri net analysis by means of B-

MACHINE parRaytrBModel

ABSTRACT_CONSTANTS
 tilesNo, sLnodesNo

PROPERTIES
 tilesNo:N & tilesNo>0 & sLnodesNo: N & sLnodesNo>0

VARIABLES
 newScene, nodesM, nodesS, tiles, ..., computedTiles

INVARIANT
 newScene:N & nodesM:N & nodesS:N & tiles:N & ...
 & computedTiles:N
 & /*I1 S-invariant*/
 commTileSl_Mf + commTileSl_Mr + failedNodes +
 nodesS + prepTileS + raytrTilesS + unscRaytrTiles
 =sLnodesNo
 & /*I2 S-invariant*/
 commTileSl_Mf + commTileSl_Mr + computedTiles +
 newScene*tilesNo +… + unscRaytrTiles = tilesNo
 & /*I3 S-invariant*/
 commTileSl_Mf + nodesM + prepTileM + raytrTilesM=1
 & /*I4 S-invariant*/
 commTileSl_Mf + commTileSl_Mr + masterRend +
 nodesM = 1
 & /*I5 S-invariant*/
 commTileSl_Mf + commTileSl_Mr*2 + computedTiles +
 masterRend+newScene*tilesNo+prepTileS+raytrTilesS +
 returnedTiles + tiles + unscRaytrTiles = tilesNo
 & /*Deadlock freeness condition */
 (newScene>=1) or (nodesM>=1 & tiles>=1) or
 (nodesS>=1 & tiles>=1) or…
 or (computedTiles>=tilesNo))

INITIALISATION
 newScene:=1 || nodesM:=1 || nodesS:=sLnodesNo ||
 tiles:=0 || ... || computedTiles:=0

OPERATIONS
op_sendScene=
 SELECT newScene>=1 THEN
 newScene:=newScene - 1 || tiles:=tiles + tilesNo
 END;
op_selectNewTileM=
 SELECT nodesM>=1 & tiles>=1 THEN
 masterRend:=masterRend + 1 || nodesM:=nodesM
 - 1 || prepTileM:=prepTileM + 1 || tiles:=tiles - 1
 END;
op_selectNewTileS=
 SELECT nodesS>=1 & tiles>=1 THEN
 nodesS:=nodesS - 1 || prepTileS:=prepTileS + 1 ||
 tiles:=tiles - 1
 END;

…

op_completeScene=
 SELECT computedTiles>=tilesNo THEN
 computedTiles:=computedTiles - tilesNo ||
 newScene:=newScene + 1
 END;
END

Fig. 2 Fragment of B-machine generated from the
basic PT net model, with extended invariant clause.

Method. There is also another approach [2], where not
only the system modelled but also the whole definition
of Petri net is captured in B-Method. We opted for a
more natural translation, where a link between PT net
and B-AMN models remains clear and it is, for
example, easy to import S-invariant equations from
PT net to a corresponding B-Machine. There is also no
evidence that the transformation proposed in [2] has
been implemented.

 A similar deadlock freeness condition is also included
in Event-B, an evolution of B-Method, as one of the
proof obligations [11].

3 Building up CPN model

After verification of the basic model its
“transformation” to CPN can be performed. The CPN
model is shown in Fig. 3 and its detailed description
can be found in the paper [10], available online. The
transformation has been done by hand and we tried to
keep it as “conservative” as possible to retain the
properties proved for the basic net. For the most of the
model we just transformed undistinguishable tokens of
the basic net to structured ones. These structured
tokens carry all the information needed for precise
simulation, such as complexity of a tile and type of

Fig. 3 Timed CPN model of parallel raytracing.

the node where the tile will be raytraced, raytracing
job duration and communication delays. The
corresponding arc expressions have been added to
compute data carried by tokens. High-level nature of
CPN also allowed a partial folding and thus
simplification of the net structure: all places and
transitions of the net that differ only in suffix (S or M)
merged to one node (i.e. sucRtrStartS and
sucRtrStartM to sucRtrStart or nodesM and nodesS to
freeNodes). Of course, this folding resulted in addition
of new arc expressions and transition guards. Folded
places and transitions are rendered in blue in Fig 3.

We illustrate these changes on a part responsible for
the start of tile raytracing: In the basic model the
choice between successful and unsuccessful raytracing
start is simply non-deterministic. But in the CPN
model the choice depends on the value of the field
cSuc of a data structure carried by a token t that
represents a tile to be raytraced. A value of cSuc is set
by the function setSuc_nTp when the tile is selected.
Because the token data structure also carries
information about type of the node where the tile will
be processed, we no longer need separate places and
transitions for slave and master (setSuc_nTp ensures
that cSuc will be true in the case o master node). We
can say that the transformation to CPN limited the
non-determinism by taking simulation-related details
into consideration, but the “token flow” is essentially
the same. A number of not-yet raytraced tiles is also
represented differently: In the PT net it is simply the
marking of tiles (tilesDist). In the CPN it is the value
of the field remTiles of a record-type token td, stored
in tilesDist. The token td also carries information
about a distribution of the scene complexity among
tiles.

We can also see two new parts (rendered in brown)
added to the CPN model:

1. delayRendMr, commTime and adjacent arcs: This
part ensures that delay, caused by a
communication with slaves, will be added to a
raytracing job duration on the master node.

2. scStartTime and adjacent arcs: The place
scStartTime stores the time of raytracing job
start. The time stored is then subtracted from the
simulation time when completeScene fires and
stored to a text file for further processing.

The CPN model has been used to evaluate possible
improvements of our current parallel raytracing
implementation. The improvements aimed at
reduction of the communication delay by adding some
memory buffers to the master or slave nodes.
Obtained simulation results, presented in [10], shown
that the improvements are not worth of an
implementation. But to be sure in this case, we plan to
perform other “large-scale” simulation experiments,
utilizing our newly developed simulation automation
tool for CPN and CPN tools.

4 Conclusion

In this paper we demonstrated how Petri nets and B-
Method can be used to design and verify a parallel
raytracing strategy model. We shown the verification
of a PT net model that served as a basis for building a
high-level timed CPN model, used for simulation-
based performance analysis.

While the verification of the PT net model has been
performed using automated tools and formal theory,
the transformation, or refinement, to the CPN model
has been done by hand. Therefore we intend to
prepare a tool which will partially automate the
transformation by utilizing known approaches to
transformation of ordinary Petri net to CPN (including
folding) [4] and refinement of Petri nets [13].

We also intent to extend our Petri net to B-machine
translation to CPN. This can be done by adopting a
method similar to that of [8], where markings are
translated to set variables and transition guards and
expressions on adjacent arcs to preconditions and
generalised substitutions of corresponding B-machine
operations. Here a translation of B-AMN expressions
to CPN expressions, defined as a part of [9] can be
helpful.

The work presented is supported by VEGA grant
project No. 1/0646/09: “Tasks solution for large
graphical data processing in the environment of
parallel, distributed and network computer systems”.

5 References

[1] J.R. Abrial. The B-book: assigning programs to
meanings. Cambridge University Press, 1996.

[2] J. Ch. Attiogbé. Semantic Embedding of Petri
Nets into Event-B. Technical Report. LINA - FRE
CNRS. http://arxiv.org/abs/cs/0510073

[3] B. Berthomieu, F. Vernadat. Time Petri Nets
Analysis with TINA. In: Proc. of the Third
International Conference on the Quantitative
Evaluation of Systems, pages 123-124, 2006.

[4] H. Darabi, M.A. Jafari. A zero-one programming
of Petri nets to colored Petri net transformation.
In: Proc. of the Fourth International Conference
on Computer Integrated Manufacturing and
Automation Technology, pages 25-31, Troy, NY,
USA, October 1994.

[5] J. Desel, W. Reisig. Place/Transition Petri Nets.
In: G. Goos, J. Hartmanis, J. van Leeuwen.
(editors) Advances in Petri Nets. LNCS, vol.
1491, pages 122-173. Springer, Heidelberg,
1997.

[6] Š. Hudák, Š. Korečko and S. Šimoňák. ˛A
Support Tool for the Reachability and Other
Petri Nets-Related Problems and Formal Design
and Analysis of Discrete Systems. Problems in
Programming, 20, 2-3:613-621, 2008.

[7] K. Jensen, L.M. Kristensen and L. Wells.
Coloured Petri Nets and CPN Tools for
Modelling and Validation of Concurrent
Systems. International Journal on Software
Tools for Technology Transfer, 9, 3-4:213-254,
2007.

[8] L.A. Kalinichenko, S.A. Stupnikov, N.A.
Zemtsov. Extensible Canonical Process Model
Synthesis Applying Formal Interpretation. In
Proc. of the East-European Conference
ADBIS’05, pages 183-198, Talin, Estonia,
September 12-15 2005,.

[9] Š. Korečko. Integration of Petri Nets and B-
Method for the mFDT Environment. PhD thesis.
DCI FEEI TU Košice, Slovakia, 2006 (in
Slovak).

[10] Š. Korečko, B. Sobota and R. Janošo. Evaluation
of Parallel Raytracing Strategy Improvements by
Petri Nets. Journal of Computer Science and
Control Systems, 3, 1:87-92, 2010.
http://electroinf.uoradea.ro/reviste%20CSCS/vol
umes/volumes.htm

[11] C. Métayer, J.R. Abrial, L. Voisin. Event-B
Language. RODIN Deliverable 3.2, 2005.
rodin.cs.ncl.ac.uk/deliverables/D7.pdf

[12] T. Murata. Petri nets: Properties, analysis and
applications. Proceedings of the IEEE, 77, 4:
541-580, 1989.

[13] J. Padberg, M. Urbášek. Rule-Based Refinement
of Petri Nets: A Survey, LNCS vol. 2472, pages
161-196, Springer Berlin-Heidelberg, 2003.

[14] B. Sobota, J. Perháč, Cs. Szabó and Š. Schrötter.
High-resolution visualisation in cluster
environment, In Proc. of Grid Computing for
Complex Problem 2008 - GCCP 2008, pages 62-
69, Bratislava, October 27-29 2008, Institute of
Informatics of Slovak Academy of Sciences.

[15] http://www.atelierb.eu

[16] http://homepages.laas.fr/bernard/tina/

[17] http://wiki.daimi.au.dk/cpntools

[18] http://www.povray.org/

