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Abstract  

Many approaches have been suggested to solve simulation optimization 
problems. In classical problems, these approaches provide only one solution 
(optimal or “near optimal”), which is the one that gave the best results on a 
given performance criterion, on the basis of the simulation experiments 
performed. In such types of problems as design problems, this “best solution” 
may not be considered as the most suited for design makers. Indeed, other 
considerations as the measured performance can have to be taken into account 
(e. g., certain solutions can be more difficult to implement, or may induce 
supplementary costs); the simulation model cannot incorporate all the elements 
that are important to the decision maker. To provide decision makers with 
sufficient flexibility in their final choice, we suggest to provide several efficient 
solutions (the best found and some other local optima with acceptable 
performance) instead of only one. Then, the decision makers can make their 
choice based on other considerations than only the performance evaluated by 
simulation. To address this problem, we propose to combine a multi-modal 
evolutionary algorithm with a simulation model. We show how such an 
approach can be implemented by adapting the recently published Crowding 
Clustering Genetic Algorithm (CCGA) and connecting it with ARENA. The 
benefits of this multimodal simulation optimization approach are illustrated with 
a supply chain problem where several parameters have to be optimized.  
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1 Introduction 

In the design of several types of systems, it is often 
necessary to determine the best values of certain 
parameters, so as to obtain the best performance. For 
example, the number of cranes in a harbor, the number 
of servers in a communication network, the buffer 
sizes and transport lot sizes in a manufacturing 
system, etc. In this respect, simulation is often used to 
evaluate the performance [1, 2], which can be based 
on customer’s satisfaction, costs, delay, number of 
works in progress, etc. When there are numerous 
parameters whose values are to be determined, the 
number of possible solutions to evaluate can be too 
high. Thus, an exhaustive search is impossible. It is 
necessary to use simulation optimization methods, 
which incorporate a search strategy to find the optimal 
solution (e.g. the best performance). Many approaches 
suggested in the literature can be used for simulation 
optimization [3, 4, 5, 6, 7] to obtain the solution that 
gives the best results, on the basis of the evaluated 
performance. 

However in various types of concrete problems (e. g., 
design problems), all the considerations that have to 
be taken into account cannot be included in a 
simulation model or in an objective function. For 
example, certain solutions can be more difficult than 
others to implement, certain costs can turn out to be 
too difficult to evaluate, etc. Therefore, the final 
choice for a solution can be based on other criteria 
than only the performance, as measured by the 
simulation model. Furthermore, the simulation model 
cannot incorporate every detail about the system and 
certain simplifying assumptions have sometimes to be 
made.  

As a consequence, in certain cases it may be 
interesting to provide the decision makers with more 
than one solution (the one found to be the best through 
a simulation optimization process), which is the 
approach generally encountered in the literature. 
Decision makers can be interested in selected a 
solution with slightly lowest performance as far as this 
solution provides other advantages, which cannot be 
measured using simulation (e. g. difficulties in 
implementing the solution). This is the key idea that 
we develop in this article, where we suggest searching 
for a set of k efficient solutions. These k efficient 
solutions represent local optima, which we would like 
to be as close to the (unknown) optimal solution as 
possible and to be as different as possible each other. 
Such a problem can be addressed using a multimodal 
optimization metaheuristic, connected to the 
simulation model, as in other simulation optimization 
methods. To our knowledge, this approach has not 
been studied in the literature and is not reported in 
surveys, such as [3, 4, 5, 6, 7].  

The aim is here to allow a choice to be made among 
the k efficient solutions, which is not only based on 
the performance evaluated by simulation, but also on 

other considerations that the decision maker finds 
relevant, on the basis of his or her expertise.  

This paper is organized as follows. Section 2 
introduces classical simulation optimization 
approaches. Section 3 presents multimodal 
optimization and introduces the Crowding Clustering 
Genetic Algorithm. Section 4 presents the suggested 
approach and Section 5 illustrates its benefits on a 
supply chain problem. Finally, Section 6 provides our 
concluding remarks and future research directions. 

2 Simulation optimization 

Simulation optimization approaches are used to search 
the best possible values of a vector of input variables 
to a simulation model (e. g., number of resources or 
number of operators), so as to optimize an objective 
function (e. g., expectation) of an output variable. 
Tekin and Sabuncuoglu [7] formalize a simulation 
optimization problem as follows: 

                             Min/Max F(X)                         (1)                                
       

where F(X) is generally of the form: E [G (X, ω )], 
the performance measure of the problem. The quantity 
G (X,ω ) is called the sample performance, 
ω represents the stochastic effects in the system and X 
= (X1, …, Xn) is a vector of input variables that 
belongs to domain D = ⊗  Di, where Di represents the 
respective domain of Xi.   

In the literature, a variety of methods have been 
proposed to solve the above simulation optimization 
problem, for instance metaheuristics such as simulated 
annealing and evolutionary algorithms [8]. Several 
surveys discuss foundations, theoretical developments 
and applications of these techniques [6, 7, 8, 9]. 
However they focused on the problem given in Eq. 
(1), trying to find best solution. They do not discuss 
how several different enough solutions can be found, 
which is what we are interested in. In this respect, we 
suggest in the following to use a multimodal approach 
as the search method in the simulation optimization 
process. The basic background about multimodal 
optimization is given in the next section.  

3 Multimodal optimization  

3.1 Principle 

Multimodal optimization aims at locating multiple 
local optima in a search space (Fig. 1) in a single 
optimization run. It is used in a large variety of 
engineering problems and is more and more popular in 
different areas, such as electronic engineering, 
telecommunication and medicine [10, 11, 12, 13]. 

Several metaheuristics can be used for multimodal 
optimization (e. g., [14, 15]). The efficiency of 
evolutionary approaches for this purpose has been 
reported by many researchers [16]. As a matter of fact, 
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the use of a population of solutions allows niches [15, 
16] to be determined, which divide the population into 
different subpopulations and drive them towards 
different local optima. 

Niching methods aim at maintaining enough diversity 
in the population and at reducing the effect of genetic 
drift (i.e., convergence to single optima) resulting in 
the standard optimization algorithms. Various niching 
approaches are used in the literature [17, 18, 19]: 
crowding, clearing procedures, clustering or sharing 
schemes, etc. Among existing approaches, the recently 
published CCGA multimodal genetic algorithm has 
been found to give good results, comparing to other 
niching methods on standard multimodal tests 
functions [20].  

 

 

 

 

 

 

 

Fig. 1 Multimodal function 

Several approaches have been published in the 
literature to addressed multimodal optimization [17].  
In the next section, we focus on CCGA, which is a 
well known evolutionary algorithm adopted for this 
purpose. 

3.2 Crowding Clustering Genetic Algorithm 

CCGA provides a mechanism for generating multiple 
optima by combining a standard crowding method to 
form niches [18] with a clustering strategy to 
eliminate genetic drift effectively. The idea of 
clustering is already in crowding algorithm. The 
niching strategy consists en two parts.  Firstly, the 
fittest individual of each niche is selected to survive 
into the next generation. Secondly competitions are 
made between these individuals to prevent converging 
to a single optimum. The main steps of the algorithm 
are as follows [20]: 

Step 1.  Initialization of distributed population. 
Number of population is PopNum. 

Step 2.   Recombination of parents to generate 
PopNum children. 

Step 3. Standard Crowding and clustering to form 
niches:  

       For each parent Pj, j=1... PopNum,  

construct PopNum clusters {Pj, CSj} using a 
standard crowding model with CF = 
PopNum under a distance metric D (),  

For each cluster,  

select the fittest individual CCj as the center.  

Sort all clusters according to their centers. 

Step 4. Definition of Reserved Clusters: RC. Each 
element in RC has a center of cluster RCCi 
and a radius of cluster RCRi. 

 For ( j=1…PopNum) 
   
                      Compare the jth cluster with all clusters 

RCCi in RC,  
   

For all i,  
  if (D (CCj, RCCi) > RCRi or   Peak 

(CCj, RCCi) = 1)  Then  
  place CCj into RC, 

  set the radius of cluster as min (CRj, 
D(CCj, RCCi)). 

  
Step 5. Definition of the next Generation: Define the 

number of elements in RC as NRC; generate 
(PopNum - NRC) uniformly distributed 
individuals in the feasible solution space. 
These individuals and the centers of clusters 
in RC enter the next generation. 

Step 6. Repeat step 2 to step 6 until the maximum 
generation number (MaxGen) reaches. 

The initial population can be randomly generated and 
PopNum denotes the population size. Then, each 
couple of parents is randomly selected from the 
individuals for crossover process. Two offspring’s are 
generated per couple and we obtain the population of 
children. The size of this last population is called 
PopNum children. Then, an iterative procedure is 
applied. It begins by grouping each child Ci, i=1, 
2….CF with its nearest parent under D () using a 
standard crowding method with CF (Crowding factor) 
= PopNum to eliminate selection error. The 
individuals within each cluster are sorted according to 
their fitness values and the individual with the highest 
fitness value is called the center CCj. The competition 
between centers is made using the distance metric D 
(), which avoids genetic drift in the crowding 
algorithm, and the concept of peak detection which 
links crowding and clustering to prevent niches from 
being destroyed by mistake. The algorithm terminates 
when a given number generations is reached.  

It does not use any mutation operator and diversity 
handled by introducing a proportion of new 
individuals in each generation (see step 5). 



We use this algorithm in the rest of the paper. We 
chose it because of the good performances reported in 
terms of quantity, quality and precision of the 
solutions found [20].  

4 Proposed approach  

As explained in the introduction, we are interested in 
obtaining several good solutions in our simulation 
optimization process, so as to provide decision makers 
with more flexibility in their final choice. To be good 
enough, these solutions must obtain performances that 
are as close as possible to the optimal solution (local 
optima) and that have characteristics different enough 
in order to offer alternative choices. The decision 
making process is based on three stages, as depicted in 
Fig. 2.  

 

 

Fig. 2 Decision process 

In the first stage, we aim at determining the set S of p 
solutions, different enough, which are local optima of 
Eq. (1). Such a problem can be solved using a 
multimodal optimization search connected with the 
simulation model that evaluates the system response 
(see Fig. 3). The multimodal simulation optimization 
search allows us to find p solutions: X1,…., Xp which 
are local optima. 

In the second stage, we are interested in restricting this 
set to the k solutions that have acceptable 
performances. Assume that the best solution is XBest 
and F(XBest) the relative performance. Then, we want 
that F(X1)>F(XBest)-MAXDEG, …., F(Xk)>F(XBest)-
MAXDEG, where MAXDEG represents the maximum 

degradation of performance that the decision maker is 
willing to accept. 

 

 Fig. 3 Multimodal simulation optimization 

The final choice is made in the last stage, where the 
alternatives are analyzed. The solution Xc among the k 
selected is chosen on the basis of the decision maker’s 
expertise. This choice is not only based on the 
performance. Other considerations, as the solution 
cost, the easiness of implementation (e. g. technical 
difficulties), and the final users acceptance can play an 
important role in the final decision. Such types of 
considerations can be quite difficult to include in a 
simulation model.  More formal methods, to make the 
final selection, such as Analytic Hierarchy Process 
(AHP) [21] can be used, if needed, at this stage. 

This multimodal simulation optimization approach has 
been implemented using CCGA (in C++ language), as 
the search method connected with ARENA [22]. 
CCGA has needed to be adapted to take into account 
other variables as real variables (CCGA has been 
designed for optimization in IRN).  

5 Application to a supply chain problem  

This application problem is inspired from industry and 
is described in [23]. The supply chain is composed of 
2 sites. The supplier manufactures the products, which 
are then transported to a distribution center by a lorry. 
The customers bring the products in the distribution 
center when they are available. If the products are not 
available, then orders are sent to the suppliers. Three 
types of parts are produced: Pm for m= 1 to 3. The 
demand of products is based on the following mix: 
65% P1, 25% P2 and 10% P3.  
The supplier manufacturing system consists of a 
production line, which carries out three operations, 
according to a Just In Time philosophy. Every 
operation requires a constant amount of processing 
time. Production is performed by batch (a given batch 
size for each type of product). The stock for raw 
material is assumed to be infinite. Kanban loops are 
used between each machine of the production line (for 
each part type). A lorry delivers batches of products 
(transportation lots of a given size for a given product) 



to the distribution center; it also brings back the orders 
for new products. Lorries visit the suppliers every 4 
hours. 

The optimization problem consists in determining the 
following three parameters for each part type:  

• KBm = [10…30]: number of kanbans  (for the 
production line) for the parts of type m,  

• TLUm = [1…20]: transport load units 
associated with part (transport batch size) m, 

• PLUm = [1…10]: production load units 
associated with part (production batch size) 
m.  
 

These parameters define the input variables and the 
vector X = [KBm, TLUm, PLUm]  for m = 1 to 3. This 
vector defines a configuration of our system. 

For economical reasons, we have to minimize the 
costs induced by order-to-delivery lead time and the 
amount of WIP. The objective function to minimize 
can be expressed in Eq. (2): 

                 F(X) =CWIP*NBE+∑Cm*TpsCm               (2)  

F(X) is stochastic (the time between arrival of 
customers orders follows an exponential distribution).  

With: 

• NBE: number of WIP, 

• CWIP : cost of one WIP, 

• Cm: cost of one unity of time for orders delay 
of  part m, 

• TpsCm: time to satisfy a command of part m, 

• m: type of part.. 

 
The model being stochastic, a long simulation run [1] 
of 80000 hours has been used, with a warm-up period 
of 4000 hours.  
The Euclidian distance D() is used in CCGA as the 
distance metric to form niches and in the selection of 
reserved clusters (respectively steps 2 and step 5 see 
section 3.2). After several empirical tests, the 
population size chosen was 50 and the stopping 
criterion 500 generations. 

We obtained 39 solutions, which are the centers of the 
reserved clusters (see section 3.2).  The best solution 
XBest has a performance of 8314.11. It is considered 
that the performance lost should not be more than 
9145.52, which represents 10 % of degradation. The 
selected solutions are presented in Tab. 1. 

If decision makers want to take into account the CO2 
production of this supply chain, then larger 
transportation batches can be preferred (within the 
limit of capacity of the lorries available). In this 
respect, the solution 5 might be considered as more 
interesting than the solution 1. This choice reduces the 
number of transport cycles. Nevertheless, this solution 

implies large production load units. This  
aspect could have negative influence in case of quality 
problems. Indeed, when a default is detected on a 
product, generally the concerned batch is not send to 
the customer to prevent quality feedbacks.  Taking  
this into account would lead to favor solutions 1 and 9 
as the most relevant ones, because of their smaller 
production batches. We could also consider that 
configurations with few kanbans would provide more  
flexibility to the production process, which is useful 
for example in case of urgent orders or unexpected 
breakdowns. 

Tab. 1 Selected solutions 

 

Such comparisons illustrate how, in some situations, it 
could be acceptable to lost performance to take into 
consideration other important issues, such as the 
environmental impact or the flexibility level. 

6 Conclusion  

In a certain number of optimization problems (e. g., in 
industry), loosing performance can be accepted as far 
as other considerations, such as the cost of the 
proposed solution, its easiness to be implemented in 
the enterprise, can be considered. Therefore, a 
simulation optimization approach providing several 
efficient solutions instead of one may turn out to be 
very useful. This objective can be achieved through a 
multimodal optimization approach of simulation 
models, which provides the decision maker with 
degrees of freedom in his/her choice of efficient 
solutions. We have illustrated this paradigm of 
“multimodal simulation optimization” by adapting the 
CGGA algorithm to problems with integer variables 
and connecting it with ARENA. The reserved centres 
of clusters obtained at the last iteration of CGGA 
provide a set of local optima, which constitutes 
alternative solutions from which the most relevant can 
be determined by the decision makers on the basis of 
their several types of other considerations (costs, 
implementation, robustness, etc.) and on their 
respective expertise. A supply chain problem, where 
lot sizes have to be determined has shown the 
relevance of this approach. 

Our future researches directions are concerned with 
distributing this approach to save computing time 
[24], incorporating statistical comparisons of solutions 

    

  

  



(when the simulation model is stochastic), taking into 
consideration simulation configuration problems [25] 
and testing other multimodal algorithms. 
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