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Abstract

Many approaches have been suggested to solve sionulaptimization
problems. In classical problems, these approacheade only one solution
(optimal or “near optimal”), which is the one thgdve the best results on a
given performance criterion, on the basis of theuation experiments
performed. In such types of problems as designlenady this “best solution”
may not be considered as the most suited for desigkers. Indeed, other
considerations as the measured performance cantbde taken into account
(e. g., certain solutions can be more difficultitoplement, or may induce
supplementary costs); the simulation model canmoirporate all the elements
that are important to the decision maker. To prevaecision makers with
sufficient flexibility in their final choice, we ggest to provide several efficient
solutions (the best found and some other local nmptiwith acceptable
performance) instead of only one. Then, the decisit@kers can make their
choice based on other considerations than onlyp#r®rmance evaluated by
simulation. To address this problem, we proposedmbine a multi-modal
evolutionary algorithm with a simulation model. Wahow how such an
approach can be implemented by adapting the rgceutblished Crowding
Clustering Genetic Algorithm (CCGA) and connectihgvith ARENA. The
benefits of this multimodal simulation optimizatiapproach are illustrated with
a supply chain problem where several parameters taalve optimized.
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other considerations that the decision maker finds
relevant, on the basis of his or her expertise.

In the design of seve_ral types of systems, it terof This paper is organized as follows. Section 2
necessary to determine the best values of certgjftroduces classical  simulation  optimization
parameters, so as to obtain the best performarwge. %\pproaches. Section 3 presents multimodal
example, the number of cranes in a harbor, the BIMb,ptimization and introduces the Crowding Clustering
of servers in a communication network, the buffegenetic Algorithm. Section 4 presents the suggested
sizes and transport lot sizes in a manufacturingynroach and Section 5 illustrates its benefitsaon
system, etc. In this respect, simulation is ofteadito supply chain problem. Finally, Section 6 provides o

evaluate the performance [1, 2], which can be basegnc|uding remarks and future research directions.
on customer’s satisfaction, costs, delay, number of

works in progress, etc. When there are numero Simulation optimization
parameters whose values are to be determined, the
number of possible solutions to evaluate can be t&imulation optimization approaches are used tockear
high. Thus, an exhaustive search is impossiblés It the best possible values of a vector of input e
necessary to use simulation optimization method& a simulation model (e. g., number of resouraes o
which incorporate a search strategy to find thénaglt number of operators), so as to optimize an objectiv
solution (e.g. the best performance). Many appresichfunction (e. g., expectation) of an output variable
suggested in the literature can be used for simulat Tekin and Sabuncuoglu [7] formalize a simulation
optimization [3, 4, 5, 6, 7] to obtain the solutitrat optimization problem as follows:
ggﬁsrrﬁ?:ngjst results, on the basis of the ewduat Min/Max F(X) 1)

X €D

design problems), all the considerations that mveg\/vhere F(X) is generally of the formk [G (X, )], .
be taken into account cannot be included in e performa_nce measure of the problem. The gyantit
simulation model or in an objective function. For® (X&) is called the sample performance,
example, certain solutions can be more difficutirth Gerepresents the stochastic effects in the systenXand
others to implement, certain costs can turn oupeo = (X1, ..., %) is a vector of input variables that
too difficult to evaluate, etc. Therefore, the finabelongs to domai® = [I D;, whereD; represents the
choice for a solution can be based on other aaiterrespective domain of;.

than only the performance, as measured by the . .

simulation model. Furthermore, the simulation mOdgnothoeselgetft:(r)?\,/eath\éagggyveoginr?jlt:t?grf ohatlivrr?izgggrq
cannot incorporate every detail about the systech af"oP P

certain simplifying assumptions have sometimeseto tprobler_n, for instance r_netaheurlstlc_s such as sieatla
made annealing and evolutionary algorithms [8]. Several

surveys discuss foundations, theoretical developsnen
As a consequence, in certain cases it may lmnd applications of these techniques [6, 7, 8, 9].
interesting to provide the decision makers with enorHowever they focused on the problem given in Eq.
than one solution (the one found to be the besutyit (1), trying to find best solution. They do not diss
a simulation optimization process), which is theéhow several different enough solutions can be found
approach generally encountered in the literaturevhich is what we are interested in. In this respeet
Decision makers can be interested in selected saggest in the following to use a multimodal apploa
solution with slightly lowest performance as fartlsis as the search method in the simulation optimization
solution provides other advantages, which cannot lppocess. The basic background about multimodal
measured using simulation (e. g. difficulties inoptimization is given in the next section.
implementing the solution). This is the key ideatth
we develop in this article, where we suggest séagch 3 Multimodal optimization
for a set ofk efficient solutions. Thesé& efficient
solutions represent local optima, which we wouke: li 3.1 Principle

to be as close to the (unknown) optimal solution agyitimodal optimization aims at locating multiple
possible and to be as different as possible edwr.ot |54 optima in a search space (Fig. 1) in a single

Such a problem can be addressed using a mU|timOQﬁ‘Jtimization run. It is used in a large variety of

optimization ~ metaheuristic, ~connected 1o thengineering problems and is more and more popular i
simulation model, as in other simulation optimieati jifferent areas. such as electronic engineering

methods. To our knowledge, this approach has n@fiecommunication and medicine [10, 11, 12, 13].
been studied in the literature and is not repoited

surveys, such as [3, 4, 5, 6, 7]. Several metaheuristics can be used for_ multimodal
o , optimization (e. g., [14, 15]). The efficiency of
The aim is here to allow a choice to be made among,q|ytionary approaches for this purpose has been

the k efficient solutions, which is not only based ONteported by many researchers [16]. As a matteadf f
the performance evaluated by simulation, but also o

1 Introduction

However in various types of concrete problems (g.



the use of a population of solutions allows nicHds constructPopNumclusters £;, CS} using a
16] to be determined, which divide the populatiotoi standard crowding model withCF =
different subpopulations and drive them towards PopNumunder a distance metiiz (),

different local optima. For each cluster,

Niching methods aim at maintaining enough diversity
in the population and at reducing the effect ofegien
drift (i.e., convergence to single optima) resgtiim Sort all clusters according to their centers.
the standard optimization algorithms. Various mchi

approaches are used in the literature [17, 18, 1%tep 4. Definition of Reserved ClusterRC Each

crowding, clearing procedures, clustering or shprin element inRC has a center of clust®®CG
schemes, etc. Among existing approaches, the tgcent and a radius of clust&CR.

published CCGA multimodal genetic algorithm has
been found to give good results, comparing to other
niching methods on standard multimodal tests
functions [20].

select the fittest individuaL G as the center.

For (j=1..PopNum

Compare thB gluster with all clusters
RCG in RC,

For all i,
if (D (CG, RCG) >RCRor Peak
(CG,RCG) =1) Then
placeCG into RC,
set the radius of cluster as miDR,

D(CG,, RCQ)).

Step 5.Definition of the next Generatioefine the
number of elements iRC asNRC generate

Fig. 1 Multimodal function (PopNum - NRQ uniformly distributed
Several approaches have been published in the individuals in the feasible solution space.
literature to addressed multimodal optimization][17 These individuals and the centers of clusters
In the next section, we focus on CCGA, which is a in RCenter the next generation.
well known evolutionary algorithm adopted for this
purpose. Step 6.Repeatstep 2 to step 6 until the maximum

3.2 Crowding Clustering Genetic Algorithm generation numbeMaxGer) reaches.

CCGA provides a mechanism for generating multiplghe initial population can be randomly generated an
optima by combining a standard crowding method tpopNum denotes the population size. Then, each
form niches [18] with a clustering strategy tocouple of parents is randomly selected from the
eliminate genetic drift effectively. The idea ofjndividuals for crossover process. Two offspringte
clustering is already in crowding algorithm. Thegenerated per couple and we obtain the population o
niching strategy consists en two parts. Firsthe t children. The size of this last population is cdlle
fittest individual of each niche is selected tovet8  pPopNum children.Then, an iterative procedure is
into the next generation. Secondly competitions argpplied. It begins by grouping each chi@, i=1,
made between these individuals to prevent convergi. .. CF with its nearest parent und& () using a
to a single optimum. The main steps of the algorith standard crowding methodith CF (Crowding factor)
are as follows [20]: = PopNum to eliminate selection error. The
individuals within each cluster are sorted accaydm
Step 1. Initialization of distributed population. their fitness values and the individual with thghest
Number of population iPopNum fitness value is called the cent@€. The competition
between centers is made using the distance nidtric
Step 2. Recombination of parents to generate (), Which avoids genetic drift in the crowding
PopNumchildren algorithm, and the concept gieak detectiorwhich
links crowding and clustering to prevent nichesnfro
being destroyed by mistake. The algorithm termimate

Step 3. Standard Crowdingand clustering to form when a given number generations is reached,

niches:
It does not use any mutation operator and diversity

For each paref, j=1...PopNum handled by introducing a proportion of new
individuals in each generation (see step 5).



We use this algorithm in the rest of the paper. Wdegradation of performance that the decision maker
chose it because of the good performances reportedwilling to accept.
terms of quantity, quality and precision of the

solutions found [20].

- Multimodal

el Optimization H
4 Proposed approach m g
As explained in the introduction, we are interedted 8 c
obtaining several good solutions in our simulation 5 T
optimization process, so as to provide decisionarak E B
with more flexibility in their final choice. To bgood ) 5
enough, these solutions must obtain performands th k¥ o
are as close as possible to the optimal solutioca(l 5‘_" T
optima) and that have characteristics differentugho ‘ Simulation 7
in order to offer alternative choices. The decision —— Model P
making process is based on three stages, as dbpicte
Fig. 2.

Fig. 3 Multimodal simulation optimization
il The final choice is made in the last stage, whbee t

Simulation Optimization alternatives are analyzed. The solutramong thek
selected is chosen on the basis of the decisiorernsak
expertise. This choice is not only based on the
performance. Other considerations, as the solution
cost, the easiness of implementation (e. g. teahnic
difficulties), and the final users acceptance day pn
important role in the final decision. Such types of
considerations can be quite difficult to include an
J simulation model. More formal methods, to make the
final selection, such agnalytic Hierarchy Process
Reatiction hasetonacceptable (AHP) [21] can be used, if needed, at this stage.

lost of performance
\ This multimodal simulation optimization approacts ha
been implemented using CCGA @*+ language), as
the search method connected with ARENA [22].
CCGA has needed to be adapted to take into account
other variables as real variables (CCGA has been

/ designed for optimization itR").
Final zelection of the BT A

chosen solution 5 Application to a supply chain problem

D local optima

g

3 22
Selected solutions XE Xk

2
A
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This application problem is inspired from indusamyd
Soteoted sl sotion @ is described in [23]. The supply chain is composgd
2 sites. The supplier manufactures the productghwh
are then transported to a distribution center hyrry.
The customers bring the products in the distrilbutio

In the first stage, we aim at determining theSef p  center when they are available. If the productsnate
solutions, different enough, which are local optiofa available, then orders are sent to the supplienseél
Eg. (1). Such a problem can be solved using #pes of parts are produce, for m= 1 to 3. The
multimodal optimization search connected with thelemand of products is based on the following mix:
simulation model that evaluates the system respon€8%P1, 25%P, and 10%Ps.

(see Fig. 3). The multimodal simulation optimizatio The supplier manufacturing system consists of a

search allows us to find solutions:X;,...., % which ~ production line, which carries out three operatjons
are local optima. according to a Just In Time philosophy. Every

) ) o operation requires a constant amount of processing
In the second stage, we are interested in resiichiis e production is performed by batch (a giverchat
set to the k solutions that have ac_:cegtatblesize for each type of product). The stock for raw
performances. Assume that the best solutioX' aterial is assumed to be infinite. Kanban loogs ar
and F(X**) the relative performance. Then, we wanjseq petween each machine of the production love (f

1 B B
that F(X)>F(X**)-MAXDEG, ..., F®>F(X**)-  g5cp part type). A lorry delivers batches of prasuc
MAXDEG whereMAXDEG represents the maximum (y-ansportation lots of a given size for a giveadarct)

Fig. 2 Decision process



to the distribution center; it also brings back tinders implies large  production load units. This
for new products. Lorries visit the suppliers evdry aspect could have negative influence in case dftgua
hours. problems. Indeed, when a default is detected on a
The optimization problem consists in determining thprOdUCt’ generally the concerngd batch is not $enq
the customer to prevent quality feedbacks. Taking

following three parameters for each part type: this into account would lead to favor solutionsntl ®
+ KB, =[10...30]: number of kanbans (for theas the most relevant ones, because of their smaller
production line) for the parts of tyme, production batches. We could also consider that
e TLU, = [1...20]: transport load units configurations with few kanbans would provide more

associated with part (transport batch sing) ~ flexibility to the production process, which is te
PLU, = [1...10]: production load units for example in case of urgent orders or unexpected

associated with part (production batch sizepreakdowns.

m. Tab. 1 Selected solutions
These parameters define the input variables and v Solution | Performance | KB, | KB, | KBy | TLU, | TLU,| TLU, [PLU; | PLU,|PLU
vectorX = [KBy, TLU,, PLU,] form= 1 to 3. This 1 8314.11| 20|13 (12 18|12 |6 [1 | 2| 7
vector defines a configuration of our system. S 835372 | 2001310 |20]6 | 7 |10] 6| 4
For economical reasons, we have to minimize tf 3 §752.36 | 22|19 |10 |18 18| 3 |5 | 6 | 5
costs induced by order-to-delivery lead time angl th 4 8880 (20|16 23 [19|9 |2 |1 |8 |10
amount of WIP. The objective function to minimize[ 5 2932 74 [18[18 [14 [18 [14] 14 s 7
can be expressed in Eqg. (2): - cow o 15 |12 01 |71 |® | & |20 & | &
F(X) =Cuip*NBE+2.C,*TpsC, 2 7 8982.33 | 22|11 |17 (17| 7 |10 6 |4 | 7
F(X) is stochastic (the time between arrival o 8 et el ol el el el ° |7
customers orders follows an exponential distritjtio 9 |voagee | 24|16 |17 |16 16| & |7 & |2
With: Such comparisons illustrate how, in some situatidns
could be acceptable to lost performance to take int
¢ NBE number of WIP, ; ; : ;
consideration other important issues, such as the
e Cwp: cost of one WIP, environmental impact or the flexibility level.

e C,; cost of one unity of time for orders delay 6 Conclusion
of partm,

. . In a certain number of optimization problems (e.imy.
*  TpsGy time to satisfy a command of pant i, stry), loosing performance can be acceptedias f
as other considerations, such as the cost of the
proposed solution, its easiness to be implemented i
] ] ) ] the enterprise, can be considered. Therefore, a
The model being stochastic, a long simulation 1in [ simylation optimization approach providing several
of 80000 hours has been used, with a warm-up perieficient solutions instead of one may turn outbe
of 4000 hours. _ _ very useful. This objective can be achieved throagh
The Euclidian distanc®() is used in CCGA as the myitimodal optimization approach of simulation
distance metric to form niches and in the selectibn models, which provides the decision maker with
reserved clusters (respectively steps 2 and st8peS gegrees of freedom in histher choice of efficient
section 3.2). After several empirical tests, th@gjutions. We have illustrated this paradigm of
population size chosen was 50 and the stoppiRgyitimodal simulation optimization” by adaptingeth
criterion 500 generations. CGGA algorithm to problems with integer variables

We obtained 39 solutions, which are the centetbef and connecting it with ARENA. The reserved centres

reserved clusters (See section 32) The bestiGolu of clusters obtained at the last iteration of CGGA
X' has a performance of 8314.11. It is considergfovide a set of local optima, which constitutes
that the performance lost should not be more thadternative solutions from which the most releveant
9145.52, which represents 10 % of degradation. TH® determined by the decision makers on the bdsis o
selected solutions are presented in Tab. 1. their several types of other considerations (costs,
o ) implementation, robustness, etc.) and on their
If deC|5|_on makers want to take into account the, CQespective expertise. A supply chain problem, where
production of this supply chain, then largengt sizes have to be determined has shown the
transportation batches can be preferred (within th@jevance of this approach.

limit of capacity of the lorries available). In shi o )
respect, the solution 5 might be considered as mofr _futqre re;earches directions are conce_rned.wnh
interesting than the solution 1. This choice redube distributing this approach to save computing time
number of transport cycles. Nevertheless, thistmsiu  [24], incorporating statistical comparisons of siins

e m: type of part..



(when the simulation model is stochastic), takintp i parameters.|EEE transactions on magnetjcs
consideration simulation configuration problems][25 40 (2): 1184-1187. 2004.

and testing other multimodal algorithms. [13] http://en.wikipedia.org/wiki/ModeFRONTIER.
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