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Abstract 

We are interested in solving and presenting some applications of higher order 

linear descriptor differential systems given by the expression: 
( ) ( ) ( )r

FX t GX t τ= − , 0τ >  

with constant square coefficients and consistent initial conditions. Higher order 

linear descriptor systems can result from several types of linearization of general 

non-linear high order descriptor delay differential systems of the general form: 
( )( ), ,..., 0
n

F x x x =� . Typical applications where second order descriptor systems 

naturally arise involve multi-body systems and networked control systems 

(NCS). In our case, in order to solve such kind of systems, we apply the com-

plex Weierstrass canonical form (WCF) and the Drazin inverse theory. Indeed, 

these two effective tools for the solution of descriptor systems have been sys-

tematically used in different areas of control and systems theory. Applying the 

WCF, two lower dimension sub-systems are obtained with a particular structure. 

A numerical example from the emerging area of NCS with constant and un-

known network induced delays is presented as our basic motivation. 
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1. Introduction 

In the theory of system science (with significant 

applications to engineering), it is valid to claim that 

the characteristics and nature of the process of synthe-

sis and global instrumentation depend on the type of 

available models, see for more details [18].  

Thus, there are models where some of the internal 

variables are classified into potential inputs, outputs, 

internal variables and referred to as oriented models, 

or models where no classification has been made of 

the internal variables and are called implicit models. 

All such models may be used for the selection of ef-

fective sets of inputs and outputs, and they are referred 

to as progenitor models. Additionally they may be 

classified as:  

(a) Internal Models,  

(b) External Models, and  

(c) Internal–External Models. 

In our case, we are interested in internal models. 

These models, see [20], have a long history and they 

are primarily described in terms of first order ordinary 

nonlinear equations and they are the standard state-

space descriptions of the implicit type  

( ), 0F x x =� ,        (1) 

where x  is the vector of all internal model variables. 

For the linear case, the above system can be reduced 

to  

Ex Ax=� .        (2) 

When the inputs u  and outputs y  have been 

defined, the non-linear control model is defined by  

( ), , 0F x x u =� , ( ), ,y G x x u= � ,          (3) 

and for the linear case is expressed by  

Ex Ax Bu= +� , y Cx Dx Eu= + +� .           (4) 

In the existing literature, linear internal models are 

called Descriptor (differential/difference) systems (or 
generalized state pace systems or differential algebraic 

systems), and they have a key role in the modelling 

and simulation process of constrained dynamical sys-

tems.  

These type of systems have gained significant 

popularity in the past years since in many real situa-

tions are capable of providing a complete description 

of dynamical systems than the traditional state space 

modelling set up see [10], and [31]. For a more sys-

tematic and comprehensive exposition of the most 

significant aspects regarding the theory, the numerical 

treatments and various applications see [6-8], [10], 
[14-15], [18-21], [23], [27] and the references therein. 

Quite often and in several applications, we are 

faced with systems of higher order, i.e. 

( )( ), ,..., 0
n

F x x x =� ,  (5) 

Then autoregressive descriptions are used, see [26].  

Moreover, linear higher order differential (de-

scriptor) systems can arise from several types of lin-

earization of a general non-linear high order differen-

tial (descriptor) system, see [21].  

Typical applications where second order descriptor 

systems naturally arise are multi-body systems; see 

[10] and [23]. To motivate and justify further the 

analysis and the importance of our approach, we pre-

sent the following classical example. 

Example 1 The mathematical pendulum 
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in the case of a multi-body system, see for more de-

tails [3] and [14]. 

In this conference paper, two main directions are 

presented and discussed. At first, we want to provide 
an engineering motivation about delay systems. Espe-

cially, we will focus on Networked Control Systems. 

Some simulation results are also presented and com-

mented. As a second direction, we will try to give a 

brief description of the mathematical extensions of 

higher order descriptor differential systems. Some 
elements of matrix pencil and Drazin inverse theory 

are also presented. Several interesting open issues for 

further research are considered.  

In the next section, we provide the engineering 

motivation for the time delay systems.     

 

2. Engineering Motivations for time de-

lay systems 

The issue of time-delay is of great importance in 

various areas of control technologies and instrumenta-

tion  such as power systems, industrial process control 

including the steel and oil industry, machining and 

metallurgical processes, remotely operated robots and 
control over computer networks (or as it is also known 

Networked Control Systems) to name a few; see [30]. 

The last two mentioned engineering disciplines de-

serve some more analysis as they present a potential 

field of application for the theory developed in this 

article. 

A Networked Control System (NCS) is a feedback 

control system where the feedback loops are closed by 

means of an electronic network [4] and [16]. It is well 

known that Networked (Control) Systems are not sub-

ject to the same design assumptions as non-networked 



systems, a fact that is mainly due to the inevitable 

presence of network delays and packet drops. 

In a typical closed-loop NCS, the state is sampled 

periodically, transmitted through the network, be-

comes available to the controller, which after comput-

ing the control action, transmits the sampled signal to 

the event-driven actuator after an uncertain or constant 

(but unknown) delay. The plant receives this com-
mand via a Zero Order Hold device (ZOH) after a 

delay τ , which models the sum total of the involved 

transmission delays. These network-induced delays 

appear in the information flow between the sensor and 

the controller (delay ( )sc kτ ), as well as between the 

controller and the actuator (delay ( )ca kτ ), where k 

denotes the dependence on the k
th

 sampling period. 

Although various system-theoretic analysis tools 

have been used for the modelling of NCS’s with de-

lays, the most successful ones are sophisticated adap-

tations of analogous results from the mature area of 

Time Delayed Systems (TDS). 

Typical examples of this “Time-Delayed” ap-

proach to NCS analysis and synthesis appear in [28, 

29] where the main result is the design of a robust 
state feedback control law which (under some rather 

mild assumptions) takes care of the uncertain net-

work-induced delays and the data packet dropout dur-

ing transmission. It is interesting that in both papers 

the assumed structure of the memoryless controller is 

of the form,  

( ) ( )u t Kx t τ= − − ,              (7) 

whereas the main synthesis tool is a carefully selected 

Lyapunov-Krasovskii functional. 

Another research discipline where the presence of 

(network-induced) time-delays is of utmost impor-
tance for both system analysis and control synthesis is 

tele-operation and bilateral (master/slave) tele - robot-

ics. 

It is an experimental fact that delays of the order of 

several hundred milliseconds can lead to instabilities 

of tele-operation systems, whereas in a bilateral robot 

system a delay of twenty milliseconds causes signifi-

cant deterioration in the time response, see for in-

stance [9], [24] and [25]. 

For example in [24, 25], standard controllers 

(whose design was based on the delay-free system) are 

modified for tele-operation over an IP network and 

experimental results are presented on a mobile robot 

following a prescribed trajectory. 

In [9] a typical bilateral Tele-robotics application 

is presented where a remote slave robot tracks the mo-

tion of a master robot that, in turn, is commanded by a 
human operator. In such a scheme, the force feedback 

from the slave to the master, suffers from varying de-

lays and packet losses due to (wireless) network con-

gestion, bandwidth, or distance. It is then shown that 

unless these network effects are taken into account, 

the stability and performance of the system may se-

verely be degraded. 

It is noted that for the majority of the above tele-

operation applications, the process modelling is based 

on scattering transformation and passivity concepts. 

The modelling approach proposed in this paper possi-
bly offers an alternative viable option, which remains 

to be examined in the future. 

Motivated by practical and realistic problems that 

occur in the control of electromechanical systems, a 

systematic study of delayed feedback has been a field 

of recent research analysis and synthesis results. This 

is another area where the proposed modelling is use-

ful.  

At this point, we present a numerical example con-

cerning a simplified NCS with delay. In fact, this 

serves as our main motivation for the present article. 

The specific example is inspired by [24, 25], 
where a networked DC motor is controlled via a PI 

controller. The (open–loop stable) DC motor dynam-

ics with armature voltage as input and angular speed 

(rad/s) as output are described by the transfer function 

2

2030 2030
( ) =

28.59 60.36 ( 26.29)( 2.29)
G s

s s s s
=

+ + + +  (8)

 

with state space description: 

1.1103 345.0704 0
( ) = ( ) ( ), 

0.0865 27.4706 5.8824
x t x t u t

−   
+   − −   

�  

[ ] ( ) = 1 0 ( )y t x t ,  (9) 

with ( ) ( )1x t y t=  being the angular speed (rad/s) and 

( )2x t  being the armature (rotor winding) current.  

The initial condition for the discretized version of 

the NCS is  

[ ]0 0
T

.    (10) 

The above dynamics are derived using the well-

known DC motor dynamics with realistic values for 

the Moment of Inertia (J = 42.6 x 10
-6

 Kg*m
2
), Induc-

tance (L = 170x10-3 H), Resistance (R = 4.67 Ω) 

Torque and Back–EMF constants (14.7x10
-3 

V*s/rad) 

and Damping Coefficient (B = 47.3x10
-6 

Nm*s/rad). 

Note that this is an extremely “benevolent” stable 

minimum-phase system with infinite gain margin and 

a phase margin of 72 degrees. 

In [24, 25], the motor’s PI speed–controller is de-

signed and tuned for a step function reference speed 

without concern for the network delays. The net-

worked version of the system is examined with a sam-

pling period  h = 1 second. The (constant or uncertain) 



delay τ varies between the bounds τmin = 0 and τmax = h 

seconds. 

Neglecting the effect of sampling, the network 

presence is modelled as a lumped input delay  

( ) ( )
sc ca

k kτ τ τ= +
            (11)

 

For a particular class of scheduled networks, this 

delay is practically constant. This class includes the 

Token Passing (TP) protocol with typical examples 

the token bus (IEEE Standard 802.4) and token ring 

(IEEE Standard 802.5). 

In the provided simulations, we examine the effect 

of constant delay τ  on the performance of a linear 

set-point tracking controller designed via standard 
LQR theory.  It should be noted that the design of this  

controller  was based on  the delay-free system and  

consists  of two parts:  a static state feedback part (-

Kx(t)) a fixed feed forward part Fr(t) with r(t) being 

the command signal.   

Exploiting the LMI-based procedure presented in 
[32], we can compute the maximum delay value, 

which guarantees the stability of the delayed system 

for a given LQR feedback gain K computed as stated 

previously.  

Selecting  

Q=1*I2  and  R=1,         (12) 

the controller gains are:  

[ ]= 0.9485 6.9097 ,K
                 (13)

 

= 1.0004F       (14) 

For this value of K the approach of [32] (a sufficient 

condition) yields a delay value of 

( ) ( ) 0.02 sec.
sc ca

k kτ τ τ= + =
             (15)

 

A command signal consisting of a staircase func-

tion corresponding to a speed command varying in the 

range of 1000 rpm (= 104.71 rad/sec), 500 rpm (= 

52rad/sec) and finally into 200 rpm (= 21 rad/sec). 

For the delay-free case, the proposed controller 

provides perfect output tracking with no overshoot.  

Introducing a lumped constant delay of 0.025sec, 

which is slightly larger than the previous delay τ, Fig-

ure 1 below shows a drastic degradation of perform-

ance of the closed loop system. 

This degradation consists of an 80% overshoot and 

violent control action (“chattering”) as shown in Fig-

ure 2.  

The black dotted line is the reference signal ( )r t  

to be tracked, the thick blue line ( )y t  is the output of 

the non-networked (delay-free) system and the red 

line ( )NCSy t  corresponds to the output of the net-

worked system suffering from constant delays. 
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Fig. 1 Comparing the tracking performance for the 

delay-free and the delayed case. 
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Fig. 2 Output and Control signals for a delay of 

0.025sec 

In the next section, several mathematical problems 

are presented and discussed.   

 

3. Mathematical Extensions  

In the previous section, some engineering prob-

lems with simulation results have been presented for 

NCS. In this section, we attempt to describe the 

mathematical extensions and problems that naturally 

arise when we want to handle/solve such type of sys-

tems. As a first extension of the existing literature, we 

will consider the more general case, where the state 

parameter is a matrix, see eqs. (1) – (3) and (5).  

Considering this extension, we permit some kind 

of interactions between the parameters that become 

involved. For instance, we can have  



( )
( ) ( )
( ) ( )

11 12

21 22

x t x t
X t

x t x t

 
=  
 

,     (16) 

where with ( )ijx t  for , 1, 2i j = , somehow we permit 

an (energy) interaction from NCS no.1 (i.e. 1, 2i = ) to 

another NCS no.2. Consequently, it is clear that the 

vector is only a special case of the matrix case.  

Furthermore, as we have also discussed in the 1st 

section, the more general case of higher-order differ-

ential systems is considered. Actually, if we assume 

that 1r = , the classical first order case is derived.      

Thus, in the system science literature, [2], [5] and 

[26] the generalization of the above system is given by  

( ) ( ) ( )r
X t AX t= ,                       (17) 

where X  is a matrix function, and is known as the 

standard form of linear higher-order matrix differen-

tial equations.  

The matrix equation (17) can be treated by several 

well-established methods, see for instance [2], [5] and 

references therein. Additionally, section 5 of [26] de-

scribes a method for solving higher order equations of 

the form  

( ) ( ) ( )q D X t AX t= ,             (18) 

where q is a scalar polynomial, D is differentiation 

with respect to time and A is a square matrix.  

Recently, as an extension of (17), the descriptor 

version, see (19), has been studied, see for instance 

[17] and [22], i.e. 

 
( ) ( ) ( )r

FX t GX t= .            (19) 

However, as we have seen in the 2
nd

 section, in 

many realistic engineering applications, it is consistent 

to design the state of the model by taking into account 

delays, see [1], [11-13]. 

In this section, our long-term purpose is to intro-

duce and study the solution of higher order linear 

(homogeneous) descriptor differential systems of type 

(22) which is provided below and can be derived 

combining (20) and (21), i.e. 

( ) ( ) ( ) ( )r
FX t EX t BU tτ= − + ,        (20)  

with a delayed state feedback   

( ) ( )U t KX t τ= − − .             (21) 

So, we obtain 

( ) ( ) ( )r
FX t GX t τ= − ,   (22) 

where τ  is a constant parameter, and X  is the state 

matrix function. Throughout the paper, F and G =  

E BK−  are square matrices without any particular 

structure and the pencil sF G−  is regular.  

At this point, it is natural to mention some addi-

tional possible extensions of the present context. It 

would be very interesting to consider matrices of a 

special structure, such as, positive (or negative!), non - 

negative, symmetric, skew symmetric etc, see [22].  

 

4. Preliminary Background and Results 

In this section, the preliminary background and 

some introductive results are given considering two 

well-known techniques for the solution of descriptor 

systems; the matrix pencil theory (i.e. complex Weier-

strass canonical form) and the Drazin inverse theory.  

The higher order linear descriptor delay differen-

tial systems, i.e. 
( ) ( ) ( )r

FX t GX t τ= − ,with 0τ > , 

and 

( ) ( )
( ) ( )

( ) ( ) ( )

1

1

1

,  

,

....

 ,

o

r

r

X t t

X t t

X t t
−

−

 = Φ


′ = Φ


 = Φ

, [ ],o ot t tτ∈ −     (23) 

are introduced, where ( ), ;F G n n∈ ×M F  (i.e. M  is 

the algebra of n n×  matrices with elements in the 

field = �F or� ) with det 0F = , where 0  is the zero 

element of ( )1,n =M F , and ( )X t  and ( )i tΦ ∈ 

( )( ), ;n n
∞ ×C MF F  for 0,1, 2,i =  ..., 1r − .  

For the sake of simplicity, we set in the sequel 

( );n n n= ×M M F  and ( ), ;m n m n= ×M M F .  

In the sequel, some preliminary results, basic con-

cepts and definitions concerning matrix pencil theory 

are introduced.  

Definition 1 The pencil sF G−  is said to be strictly 

equivalent to the pencil sF G− ��  if and only if there 

exist non-singular ,  mP Q∈M  such as  

( )P sF G Q sF G− = − �� .  (24) 

In this work, we consider the case where that pen-

cil is regular. Thus, the strict equivalence relation can 

be defined rigorously on the set of regular pencils as 

follows. Here, we regard (22) as the set of pair of non-

singular elements of 
nM  

The class of ( )s e sF G− −E  is characterized by a 

uniquely defined element, known as a complex Weier-

strass canonical form, 
w wsF Q− , specified by the 

complete set of invariants of ( )s e sF G− −E . This is the 

set of elementary divisors (e.d.) obtained by factoriz-

ing the invariant polynomials ( )ˆ,if s s  into powers of 

homogeneous polynomials irreducible over the field 



F . In the case where sF G−  is a regular, we have 

e.d. of the following type: 

• e.d. of the type p
s  are called zero finite elementary 

divisors (z. F.e.d.) 

• e.d. of the type ( )s a
π

− , 0a ≠  are called nonzero 

finite elementary divisors (nz. F.e.d.) 

• e.d. of the type ˆq
s  are called infinite elementary di-

visors (i.e.d.). 

Let 
1 2, ,..., nB B B  be elements of 

nM . The direct sum 

of these elements denoted by 
1 2 ...B B⊕ ⊕ nB⊕  is the 

{ }1 2 , ,..., nblock diag B B B . 

Then, the complex Weierstrass form 
w wsF Q−  of 

the regular pencil sF G−  is defined by  

w w p p q qsF Q sI J sH I− − ⊕ −� ,     (25) 

where the first normal Jordan type element is uniquely 

defined by the set of f.e.d.  

( ) ( )1

1
, ,

p p
s a s a ν

ν− −… , 
1 jj

p p
ν

=
=∑

    (26)
 

of sF G−  and has the form 

( ) ( )
1 1 1p p p p p p

sI J sI J a sI J a
ν ν ν− − ⊕ ⊕ −� … .(27) 

And also the q  blocks of the second uniquely defined 

block q qsH I−  correspond to the i.e.d.  

1ˆ ˆ, ,
qq

s s σ… , 
1 jj
q q

σ

=
=∑ ,  (28) 

of sF G−  and has the form 

1 1q q q q q q
sH I sH I sH I

σ σ
− − ⊕ ⊕ −� … .       (29) 

Thus qH  is a nilpotent element of nM  with index 

{ }* max : 1, 2, ,
j

q q j σ= = … , where  

*q

qH =O ,                 (30) 

and ( )
j j jp p j qI ,J a ,H  are defined as 

1 0 0

0 1 0

0 0 1

                      

j

j

p

p

I

 
 
 =
 
 
 

∈

�

�

� � 	 �

�

M

,  
( )

1 0 0

0 1 0

0 0 0 1

0 0 0 0

                                          

j

j

j

j

p j

j

j

p

a

a

J a

a

a

 
 
 
 =
 
 
 
 

∈

�

�

� � 	 � �

M

 

(31) 

and       

0 1 0 0

0 0 1 0

0 0 0 0 1

0 0 0 0 0

j jq q
H

 
 
 
 = ∈
 
 
  

�

�

� � 	 � � M .       (32) 

From the regularity of sF G− , there exist non 

singular matrices P  and Q  such that 

w p qPFQ F I H= = ⊕             (33) 

w p qPGQ G J I= = ⊕ ,                 (34) 

where ,  ,  p p qI J H  are given by (31) and (32). 

For the second approach, i.e. using Drazin 

inverses, the interested reader can be advised by [7-8]. 

Here we present only some preliminary steps.  

Definition 2 The Drazin inverse of square matrix 

nA∈M , ( )Ind A v=  is the matrix D
A  satisfying  

(i) D D D
A AA A= , 

(ii) D D
AA A A= , 

(iii) 1k D k
A A A

+ = , 

for ( )k v Ind A≥ = . 

Definition 3 Define the matrices ( ) 1
F̂ F G Fλ λ −

+�  

and ( ) 1
Ĝ F G Gλ λ −

+� , for λ ∈�  and inverse matrix 

( ) 1
F Gλ

−
+ , where ,  nF G∈M . 

According to Definition 3, there always exists 

λ ∈�  such that the matrix ( ) 1
F Gλ

−
+  is invertible, 

where ,  nF G∈M . Now, multiplying system (22) by 

left with ( ) 1
F Gλ −
+  (analogously, system (19) or 

(20)), we obtain 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 1

ˆˆ

r

r

F G FX t F G GX t

F X t G X tλ λ

λ λ− −
+ = +

⇔ =
 

Hence, according to expressions (9) and (10), we 

can take  

( )

( )
( )

1

1
1 1 1 1 1 1

1 1

ˆ

   

   

w w w

w w w

F F G F

P F Q P G Q P F Q

Q F G F Q

λ λ

λ

λ

−

−− − − − − −

− −

= +

= +

= +
(35)

 

and 

( )

( )
( )

1

1
1 1 1 1 1 1

1 1

ˆ

    

    

w w w

w w w

G F G G

P F Q P G Q P G Q

Q F G G Q

λ λ

λ

λ

−

−− − − − − −

− −

= +

= +

= +
 (36)

 



The above derived formulae can be used for the 

solution of system (22) with the initial conditions of 

(23).  

However, before we proceed further, the following 

definition is necessary.  

Definition 4 We shall call 
oX a consistent initial con-

dition for (22) at 
o

t , if there is a differentiable solu-

tion to (22) defined on some interval [ ],o ot t γ+ , 

0γ >  such that 

( ) ( ) ( ) ( )
( ) ( ) ( )

1

1

1

,  ,....,  o o o o o

r

o r o

X t t X t t

X t t
−

−

′= Φ = Φ

= Φ
  (37)

 

see [14]. 

Consider, now, for instance an electrical circuit 

which is in operation at time 
ot t< . Moreover, at the 

exact time 
ot , the system has initial condition 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )lim lim
o

k k k k

o o
t t t t

X t X t X t X t
ο

− +

− +

→ →
= ≠ = ,(38) 

for 1,2,..., 1k r= − , which is profoundly non - consis-

tent with the (new) system. This result is due to the 

impulsive behaviour of system (22) at time 
ot , which 

is translated to an effort to change (almost) instantly, 

i.e. in zero time, the state of the system in a new initial 

condition.  

From a mathematical point of view, this approach 

can be modelled efficiently by using the Dirac δ -

function and its derivatives. However, in this paper, 

only the first case is considered and fully discussed. 

The results of this section will be applied in order 

to solve higher order linear systems of type (22). In-

deed, the following Theorem divides our initial system 

(22) into two equivalent, lower dimension differential 

systems.             

Theorem 1 System (22) is divided into two subsys-

tems  

( )
, ,

( ) ( )
r

p n p p n
Y t J Y t τ= −                        (39) 

with initial conditions ( ) ( ) ( ) ( )1

, , ,
, ,....,

r

p n o p n o p n o
Y t Y t Y t

−′ ,  

and 

( )
, ,

( ) ( )
r

q q n q n
H Y t Y t τ= −                      (40) 

with initial conditions ( ) ( ) ( ) ( )1

, , ,
, ,....,

r

q n o q n o q n o
Y t Y t Y t

−′ . 

Proof We make the transformation  

( ) ( )X t QY t= .                     (41) 

Then, system (22) is transformed to  

( )
( ) ( )

r
FQY t GQY t τ= − .  (42) 

Multiplied by left by the non-singular matrix P , we 

obtain 

( )
( ) ( )

r
PFQY t PGQY t τ= − ⇔  

( )
( ) ( )

r

w wF Y t G Y t τ= − ⇔  

( )

( )
, , , ,

, , ,,

( ) ( )
.

( )( )

r

p p q p n p p q p n

r
q p q q p q q nq n

I Y t J Y t

H I Y tY t

τ
τ

  −     
  =     −       

O O

O O

 

(43)

 

Then, eq. (39) and (40) are derived. 

Now, the initial conditions are obtained  

( ) ( ) ( ) ( ) ( )1 1

o o o o o oX t QY t Y t Q X t Q t
− −= ⇔ = = Φ , 

( ) ( ) ( ) ( ) ( )1 1

1o o o o oX t QY t Y t Q X t Q t
− −′ ′ ′ ′= ⇔ = = Φ  

, . . .,  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )1 1

1

r r

o o

r r

o o r o

X t QY t

Y t Q X t Q t
− −

−

=

⇔ = = Φ
.    (44) 

The 
, 0

0

, 0

( )
( ) .

( )

p n

q n

Y t
Y t

Y t

 
=  
 

  

Thus, the initial conditions for system (33) are 

given by  

( ) ( )

( ) ( )

( ) ( ) ( )

1

, ,

1

, 1 ,

1 1

, 1 ,

,

,

....,

.

p n o o o p n

p n o o p n

r

p n o r o p n

Y t Q t

Y t Q t

Y t Q t

−

−

− −
−

 = Φ 

′  = Φ 

 = Φ 
 (45) 

 and for system (34) are provided by  

( ) ( )

( ) ( )

( ) ( ) ( )

1

, ,

1

, 1 ,

1 1

, 1 ,

,

,

....,

.

q n o o o q n

q n o o q n

r

q n o r o q n

Y t Q t

Y t Q t

Y t Q t

−

−

− −
−

 = Φ 

′  = Φ 

 = Φ 

.  

(46) 


   

5. Conclusions – Further Results 

In the present work the motivating reasons as well 

as the necessary mathematical background have been 

introduced and presented for the study of higher order 

linear [(non-) homogenous] descriptor delay differen-

tial systems.  

This general class of ordinary differential equa-

tions can cover both linear first order differential sys-



tems and Network Controlled Systems, i.e. system 

with delays. 

Since, our main goal was to motivate our research 

efforts, we avoided in providing complicated mathe-

matical formulae. In the next lines, further research 

directions are numerated and briefly presented.  

a) We want to investigate the solution properties of 

different kind of systems (see below) using two 

well-known and distinguished approaches. The first 

one is based on matrix pencil theory and the other is 

based on Drazin inverse theory. The links and com-

parisons between the results of those methods are 

expected to be examined. For more information, see 

section 5, where some preliminary results and rele-

vant mathematical background is provided. 

b) Analytically, we are interested in the following 

systems: 

• ( ) ( ) ( )r
FX t GX t τ= −  (see also 5

th
 section), 

• ( ) ( ) ( ) ( )r
FX t GX t BU tτ= − +  (i.e. the non - ho-

mogeneous case, where ( )U t can be considered as 

different kind of controllers, feedback, PI, PDI etc.) 

• ( ) ( ) ( ) ( ) ( ) ( )1

1 1...
r r

r o
FX t A X t A X t A BU t

−
−+ + + + =  

(where a much more general system is derived)   

c) As it has been already mentioned at the end of the 

3
rd

 section, it would be very interesting to consider 

matrices of a special structure, for instance, positive 

(or negative!), non-negative, symmetric, skew sym-

metric etc, see for instance [22].   

d) Moreover, following recent results presented in 

[5], [17], [22] and [26], and extending (a), analytical 

and computational easy formulae for the solutions of 

the system in (c) are expected to be investigated. 

e) From a control point of view, different extensions 

can be considered. For instance, robustness and dif-

ferent kinds of stability are expected to be further 

investigated. It is very interested, see also [10], for 

the descriptor case, where several -mathematically 

speaking- challenging types of stability have been 

established. The extension to higher order systems is 

not an easy task.  

f) Moreover, as it is already discussed in definition 4, 

see 5
th

 section, for descriptor systems, it is important 

to consider two separate cases when the consistency 

and non-consistency of the initial conditions can 

lead us to a distributional expression for the solution. 

Serious additional effort is needed for the case of 

non-consistent initial conditions. This case appears 

when we have rectangular coefficient matrices.  

g) Finally, but yet importantly, many numerical is-

sues need to be addressed and simulations and algo-

rithmic schemes should be considered and created. 

The connection of theoretical results with the 

mathematical findings is needed and required. For 

example, it is not clear what type of interactions to 

the state parameters can appear in NCS’s. It would 

be also very interesting in extending the practical re-

sults to different engineering application disciplines, 

such as the chemical engineering industry, the ma-

chining and metallurgical engineering processes, as 

well as the fast emerging field of remotely operated 

robots. 

For all of these application areas, some prelimi-

nary results and thoughts have been proposed and im-

plemented. However, much additional work is needed. 

We hope that this article provides a further concrete 

step towards this direction.  

                    

Acknowledgment: We would like to express our deep 

gratefulness to Prof. R. Karba, who has organised the 

special Session “Modelling and Simulation for Con-

trol, Coordination and Supervision” at the EUROSIM 

2010, and read carefully and commented our initial 

draft. In addition, we would like to express our thank-

fulness to the reviewer for his/her comments, which 

improved the quality of the final version of the paper.  

     

6.   References 

[1]. B.D.O. Anderson and S. Vongpaniterd, Network 

analysis and synthesis, Prentice-Hall, Englewood 

Cliffs, New Jersey, USA, 1973. 

[2]. T.M. Apostol, Explicit formulas for solutions of 

the second order matrix differential equation X ′′  
AX= , American Mathematical Monthly 82, pp. 

159-162, 1975. 

[3]. M. Arnold, Multi-rate time integration for large-

scale multi-body system models, Proceedings of 

the IUTAM Symposium on Multiscale Problems in 

Multibody System Contacts, Stuttgart, Germany, 

pp. 1 -10, 2007. 

[4]. J. Baillieul and P. Antsaklis, Control and commu-

nication challenges in networked real-time sys-

tems, Proceedings of IEEE-Special Issue on Tech-

nology of Networked Control Systems 95 (1), pp. 

9-28, 2007. 

[5]. R. Ben Taher and M. Rachidi, Linear matrix dif-

ferential equations of higher-order and applica-

tions, Electronic Journal Differential Equations, 

No. 95, pp. 1-12, 2008. 

[6]. K.E. Brenan, S.L. Campbell, and L.R. Petzold, 

Numerical solution of initial-value problems in dif-

ferential algebraic equations, Vol. 14 of Classics 

in Applied Mathematics, 2
nd

 ed., SIAM, Philadel-

phia, USA, 1996.  

[7]. S.L. Campbell, Singular systems of differential 

equations I, Pitman, San Francisco, USA, 1980.  



[8]. S.L. Campbell, Singular systems of differential 

equations II, Pitman, San Francisco, USA, 1982.  

[9]. N. Chopra, P. Berestesky, and M. Spong, Bilateral 

teleoperation over unreliable communication net-

works, IEEE Transactions on control systems 

technology 16 (2), pp. 304–313, 2008. 

[10]. L. Dai, Singular control systems, Lectures notes 

in control and information, Sciences 118, Springer 

- Verlag, 1989. 

[11]. L. Dritsas and A. Tzes, Robust Stability Bounds 

for Networked Controlled Systems with Unknown, 

Bounded and Varying Delays, IET Control Theory 

and Applications 3 (3), pp. 270-280, 2009. 

[12]. L. Dritsas and A. Tzes, Robust stability analysis 

of networked systems with varying delays, Inter-

national Journal of Control 82 (12), pp. 2347-

2355, 2009. 

[13]. L. Dritsas, V.N. Tsoulkas, A.A. Pantelous and A. 

Tzes, Robust Performance Issues in Tracking Con-

trol over Networks, IEEE Proceedings of the 1
st
 

International Conference on Intelligent Systems, 

Modelling and Simulation, Liverpool, UK, pp.264-

269, 2010.  

[14]. E. Eich-Soellner and C. Führer, Numerical meth-

ods in multi-body systems, B.G. Teubner, Stuttgart, 

1998. 

[15]. E. Griepentrog and R. März, Differential - Alge-

braic equations and their numerical treatment, 

B.G. Teubner Texte zur Mathematik. Teubner-

Verlag, Leipzig, 1986. 

[16]. J. Hespanha, P. Naghshtabrizi, and Y. Xu, A 

Survey of Recent Results in Networked Control 

Systems, Proceedings of IEEE - Special Issue on 

Technology of Networked Control Systems 95 (1), 

pp. 138-162, 2007. 

[17]. G.I. Kalogeropoulos, A.D. Karageorgos and 

A.A. Pantelous, Higher-order linear matrix de-

scriptor differential equations of Apostol-Kolodner 

type. Electronic Journal Differential Equations, 

No. 25, pp. 1-13, 2009.  

[18]. N. Karcanias, Structure evolving systems and 

control in integrated design, Annual Reviews in 

Control 32, pp. 161-182, 2008. 

[19]. P. Kunkel and V. Mehrmann, Differential - Al-

gebraic equations - Analysis and Numerical solu-

tion, EMS, Zürich, 2006. 

[20]. F.L. Lewis, A survey of linear singular systems. 

Circuits, Systems and Signal Processing 5 (1), pp. 

3-36, 1989. 

[21]. V. Mehrmann and C. Shi, Transformation of 

high order linear differential-algebraic systems to 

first order, Numerical Algorithms 42, pp. 281-307, 

2006. 

[22]. A.A. Pantelous, A.D. Karageorgos, and G.I. Ka-

logeropoulos, On the solution of higher order ho-

mogeneous complex linear descriptor differential 

systems with symmetric/skew-symmetric coeffi-

cients, Nonlinear Studies, 2010 (to appear). 

[23]. P.J. Rabier and W.C. Rheinboldt, Nonholonomic 

motion of rigid mechanical systems from a DAE 

viewpoint, SIAM Philadelphia, USA, 2000. 

[24]. Y.Tipsuwan and M.Y.Chow, Gain scheduler 

middleware: A methodology to enable existing 

controllers for networked control and teleopera-

tion: PART I: Networked control, IEEE Transac-

tions on Industrial Electronics 51 (6), pp. 1218–

1227, 2004. 

[25]. Y.Tipsuwan and M.Y.Chow, Gain scheduler 

middleware: A methodology to enable existing 

controllers for networked control and teleopera-

tion: PART II: teleoperations, IEEE Transactions 

on Industrial Electronics 5 (6), pp. 1228–1237, 

2004. 

[26]. L. Verde-Star; Operator identities and the solu-

tion of linear matrix difference and differential 

equations, Studies in Applied Mathematics 91, pp. 

153-177, 1994. 

[27]. J.C.Willems, Model for dynamics. Dynamics 

Report 2, 65, pp. 171–269, 1989. 

[28]. D. Yue, Q. Han, and P. Chen, State feedback 

controller design of networked control systems, 

IEEE Transactions on Circuits and Systems II 51 

(11), pp. 640-644, 2004. 

[29]. D. Yue, Q. Han, and J. Lam, Network-based ro-

bust H∞ control of systems with uncertainty, 

Automatica 41 (2), pp. 999-1007, 2005. 

[30]. J. P. Richard, Time Delay systems: An overview 

of some recent advances and open problems, 

Automatica 39 (10), pp.1667-1694, 2003. 

[31]. R. Yu and D.H. Wang, Structural properties and 

poles assignability of LTI singular systems under 

output feedback, Automatica 39 (4), pp. 685-692, 

2003. 

[32]. J. Zhang, C. Knopse, and P. Tsiotras, Stability of 

time-delay systems: equivalence between Lyapu-

nov and scaled small gain conditions, IEEE Trans-

actions on Automatic Control 46, pp. 482–486, 

2001. 

 

 


