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Abstract

Nowadays the robots must be able perform more and more complex tasks at higher
velocities and they must be able to interact with the environment. This can be
achieved by using advanced control algorithms, which require exact cancellation
of nonlinearities and coupling. For that, exact robot dynamic models are needed.
Hence, accurate modeling of the robot manipulator dynamicshas remained one of
the important issues in robotic. Robot manipulators are highly coupled nonlinear
systems and in practice we have to deal also with model parametric uncertainties
and obtaining. So, accurate dynamic model is a challenging task. Direct mea-
surements of the robot characteristics are usually impractical or even impossible
in many cases. This fact complicates the modeling and identification. The idea is
to employ neural networks (NN) for model based control, i.e.to use the ability
of neural networks (NN) to represent the non-linear relationship for modeling the
robot and to include NN in the control strategy. The proposedmodel is evaluated
in a simulation as well as in real world experiment.
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1 Introduction

In recent years many control algorithms that include
NN [1], which can compensate the nonlinearities in the
system, have been developed. The general mapping and
learning properties are the main advantage of NN [2],
compared to the existing general methods, since they
can learn the system characteristic without knowing the
model structure in advance [3]. This learning capabil-
ity is used to learn a certain function [4], e.g. highly
nonlinear function, direct dynamic, inverse dynamic or.
any other characteristic of the system.

The learning process can be done in two ways: the
off-line and the on-line method. Using the off-line ap-
proach, the NN learns through some learning data sets
without interacting with the robot. Using the second
method, the NN tries to adapt on-line during the learn-
ing phase. This is usually preformed during a nor-
mally long training period, when the robot system is
controlled by some independent supervised control [5].
If the learning process of NN is not switched off after
the learning phase, the NN-based controller works as an
adaptive controller [6].

In this paper, we present the application of a NN for
modeling of the robot dynamics and incorporating it in
the control strategy. This is possible due to the abil-
ity of training NN to learn both a system input-output
relationship or its corresponding inverse relationship.
Because, the torque depends only on the current state
of the robot, i.e. acceleration, velocity and position of
each joints, a static NN can been used.

Due to the analytically complex determination of the
dynamic model, and initially referred properties of neu-
ral networks, we propose to replace the dynamic model
with a NN, where the inputs into the network are joint
positionsq and velocitiesq̇ and outputs are compensat-
ing joint torquesτ . In this approach, the inertia term
has not been included into the NN because accelera-
tion are usually not available on real robots. Hence, we
have identified only the position and velocity dependent
terms, i.e. the joint friction and gravity forces.

For friction identification we propose a method, where
the system has to learn not only the friction parame-
ters but also the shape and properties of friction torque.
Considering only the torques which appear due to the
friction, we can separate the problem into the identifi-
cation of friction in individual axes.

When the robot kinematics is known, gravity compen-
sation is usually analytically and computationally unde-
manding. However, the model parameters like masses
and mass center points are sometimes very hard to ob-
tain. In such a case, the gravity torque compensation re-
quires advance identification algorithms for identifying
the gravity influence. Gravity compensation is a multi-
dimensional problem, which depends on the number of
DOFs. The interaction between separate axes is signif-
icant and can not be avoided by separating the problem
into individual axes, as in case of friction compensation.
Therefore, it is necessary to use multiple dimension in-
puts and outputs for the NN.

To verify the proposed approach we tested it first using
simulation, where the robot model and its parameters
are known. Simulation results showed that NN based
model for friction and gravity compensation can effec-
tively compensate nonlinearities in the robotic system.
Next we have implemented the algorithm on a real sys-
tem. We have compared the behavior of the robot with
and without the NN compensator.

The paper is organised as follows. In section 2, we give
a brief description of the dynamics of rigid body. In sec-
tion 3 the proposed neural network structure and learn-
ing algorithm are given. In section 4 the identification,
simulation and real world results are given. And finally
the conclusions are given in section 5

2 Robot dynamics
Robotic control based on a computed torque algorithm
is a challenging problem, since the robotic system is
non-linear and highly coupled [7]. To cope with this
problems, a general theory of linear systems can not be
directly applied [8]. However, to solve these problems,
two methods have been developed: Lagrange-Euler and
Newton-Euler formulation. Block diagram of the robot
dynamic is shown in Fig. 1.
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Fig. 1 Block diagram of the robot model

The robot dynamics, which describes the relationship
between the joint torquesτ and positionsq, is given by
the Lagrangian equation

τ = H(q)q̈ +C(q, q̇)q̇ +Bf q̇ + g(q), (1)

whereH(q) is the inertial matrix given by
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whereI is the number of DOFs. Next,C(q, q̇) is the
matrix of Coriolis and centrifugal contributions, defined
using Christoffes symbols as
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wherej, k, l = 1, ..., I, Ji is the pseudo inertia ten-
sor andTi

j is the homogenous transformation matrix
between frame i and frame j. Next,Bf is the friction



and finallyg(q) is the vector of the gravity contribution
given by

gj =

I∑

i=j

(−mig(
∂

∂qj
T0

i )ri).

Heremi is the mass of the i-th link andri contains the
homogeneous coordinates of the center of mass of link
i expressed in thei-th coordinate frame

ri = [xi yi zi 1]
T .

Elementg represents the gravity vectorg = [0 0 −g 0],
whereg = 9.8m/s2.

To compensate the nonlinearities and the coupling, the
control law is given in the form

τu = Ĥ(q)u+ Ĉ(q, q̇)q̇ + B̂f q̇ + ĝ(q) (2)

wherê represents the computed model, which is in gen-
eral not equal to the exact model. The outer loop control
lawu is equal to

u = q̈d +Kdė+Kpe. (3)

Heree is the difference between the desired and the ac-
tual value joint positions, (e = qd−q), Kp andKd are
gain matrices. From Eq. (2) it follows that exact feed-
back compensation is possible only if the model equals
to the real system. In this case, the close-loop error is

ë+Kdė+Kpe = 0 (4)

and with properly selected gainsKd andKp the asymp-
totic stability of the system can be assured.

Due to the analytically complex determination of the
dynamic model, and initially referred properties of neu-
ral networks, we propose to replace the dynamic model
described by Eq.2 with a NN. The proposed controller
based on NN dynamic compensation is given as

τu = Ĥ(q)u + FFN(q, q̇), (5)

where the FFN(q, q̇) is a static neural network. Inputs
into the network are joint positionsq and velocitiesq̇
and outputs are compensating joint torques as shown in
Fig. 2.
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Fig. 2 Block diagram of the robot model (gray) with the
compensation part based on NN

As we can see in Fig.2 the inertia term has not been
included into the NN because accelerations are usually
not available on real robots. Hence we have identified
only the position and velocity dependent terms, i.e. the
joint friction and gravity forces.

3 Neural network architecture and learn-
ing algorithm

In this section we described two-layered structure of a
NN, which is used for modeling of the robot dynamics
and can be incorporated into the control strategy. We
propose to use a static two-layered feedforward NN be-
cause in theory the torque depends only on the current
state of the robot, i.e. the acceleration, velocity and po-
sition of each joints. This NN are usually trained in the
off-line mode.

This kind of a NN architecture is most commonly
used with the backpropagation algorithm - the multi-
layer feedforward network. The backpropagation is
the generalization of the Widrow-Hoff learning rule
to multiple-layer networks and nonlinear differentiable
transfer functions [2]. Input vectors and the correspond-
ing target vectors are used to train a network until it can
approximate a function.

In [3] authors have shown that any nonlinear function
can be approximated with an arbitrary precision using a
two-layer NN with biases, a sigmoid layer, and a linear
output layer. In this case the approximation error de-
pends only on the size of the number of hidden neurons.
The standard backpropagation is a gradient descent al-
gorithm in which the network weights are moved along
the negative of the gradient of the performance function
[2].

Properly trained backpropagation (feedforward) net-
works tend to give reasonable results when presented
with a new inputs that they have never seen. Typically,
such input leads to an output similar to the correct out-
put for input vectors used in training that are similar to
the new input being presented [2]. Therefore, it is pos-
sible to train a network on a representative set of input
and corresponding outputs pairs and to get good results
without training the network on all possible pairs.

The structure of a feedforward NN that was used for
modeling of the robot dynamics is given in Fig. 3. Ac-
cording to [2], this NN can be used as a general function
approximator. Since it can, with sufficient neurons in
the hidden layer, approximate any function with a finite
number of discontinuities.
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Fig. 3 Structure of the proposed NN for modeling the
robot dynamics. The description is given in the text

The basic structure of the NN presented in Fig. 3 has I
inputs, N neurons in the hidden layer and M neurons in
the output layer. According to [2], the neurons in the



hidden layer are given with

a =
1

1 + e(IWyi+b1)
− 1, (6)

where theyi is input vector,IW is the weight matrix
andb1 is the weight vector. Next, the output layer is
given with

yo = LWa+ b2, (7)

where theyo is the system output,LW is the output
layer gain matrix andb2 is the output layer gain vector.

Once the weights and biases are determined for the
feedforward NN, the network is ready for the training.
The training process requires a set of example inputs
and corresponding targets pairs. During the training the
weights and biases of the network are iteratively ad-
justed to minimize the NN performance function [2].
Usually the default performance function for feedfor-
ward networks is the mean square error defined as

Emse =
1

N

M∑

i=M

(ei)
2. (8)

whereN is the number of inputs and corresponding tar-
gets pair andei is the difference between the targets and
NN outputs and is not refereed to thee form Eq. 4.

Several different training algorithms for the feedfor-
ward NN exist for minimizing the preformance func-
tion. All these algorithms use the gradient of the perfor-
mance function to determine how to adjust the weights
[2]. The gradient is determined with a technique called
the backpropagation.

In our case, we use an algorithm called Levenberg-
Marquardt [9] to optimise the weights. This method
was developed in order to learn the weights with the
second order convergence, without computing the Hes-
sian matrix [10] directly. A detailed description of the
above algorithm is given in [9].

Structures of NN and methods presented in this sec-
tion are included in Neural Network Toolbox for Mat-
lab/Simulink and can therefore be used out-of-the box.

4 Identification and control examples
The main part of our experimental system is a labora-
tory manipulator developed specially for testing differ-
ent control algorithms. The manipulator has four revo-
lute DOFs acting in a plane (Fig 4). As the task space
is two-dimensional (x-y) the manipulator has two re-
dundant DOFs. In [11], authors presented the exact dy-
namic model of this robot suitable for simulation. This
enables us to test proposed NN structure in both simu-
lation and real-world experiment. Hence, we can com-
pare the behavior of the control system if ideal mod-
els for friction or gravity compensation are used to the
models based on NN.

As we already mentioned, the inertia term has not been
included into the NN because acceleration is not avail-
able on this robot. Based on our experience the acceler-
ation contribution can be neglected if the experiments

Fig. 4 Experimental planar manipulator

are done with low and constant velocities. Conse-
quently, only the position and velocity dependent terms
are included in the model, i.e. the joint friction and
gravity forces.

4.1 Friction identification - (Bf q̇)

In recent years many models for friction in robotic
joints were developed, e.g. [7, 12]. Usually their com-
mon feature is that the friction model is predefined and
only the parameters are identified. However, if NNs are
used to model the friction, the system has to learn the
properties and the shape as well. Such an approach is
called a black box principle. Because the friction in a
specific joint is usually not cupped with other joints, we
can separate the problem into individual axes.

To determine the friction-velocity relationship for the
joints of a planar manipulator, each joint of the robot
was commanded to move at a constant torque and the
velocity at that torque was measured. The Simulink
model for collecting the data is presented on Fig. 8.
We assumed that the command torque corresponds to
the friction for the measured velocity. To characterise
the friction behavior, the velocity data was divided be-
tween -5 rad/s and 5 rad/s with 0.05 rad/s increments.
For each increment the mean torque value was calcu-
lated. The acquired data, a total of 241 torque-velocity
pairs per joint, was used for learning the NN.
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Fig. 5 Simulink block diagram of the planar manipula-
tor

The best fit approximation of experimental data of the



NN is shown in Fig. 6, for both negative and positive
velocities and for all 4 joint. As shown in Fig. 6 all
4 joints have a linear relationship between the friction
torques and the velocity. It is a typical combination of
Coulomb and viscous friction (the model used in the
planar manipulator dynamic model).
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Fig. 6 Velocity-dependent friction for all four joints ap-
proximated with NNs in simulation. The friction data
along with the NN curves are shown for positive and
negative velocities

However, as it can be seen form real experiments in
Fig. 7 joints 2 and 3 exhibited varying degrees of de-
creasing viscous with increasing velocity. Therefore, it
is hard to determine the basic shape for friction model,
which can be used in all four joints. Hence, we propose
a NN to model the friction, since it can easily cope with
non-symmetrical curve as shown in the bottom right-
hand plot on Fig.7.
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Fig. 7 Velocity-dependent friction for all four joints ap-
proximated with NNs in real experiment. The friction
data along with the NN curves are shown for positive
and negative velocities

To verify our friction model for the planar manipulator,
we fed-forward the torques computed by our friction
models. Fig. 8 shows the Simulink block structure of

To Workspace3

x

To Workspace1

To Workspace

Star

rx

rxdStar

ManModelT

Tq

q

qd

qdBf

Dyn Cont Task PD

rx

rxd

rxdd

q

qd

u

x

Fig. 8 Simulink block diagram of the task space control
for a planar manipulator with friction compensation

the system with the control algorithm defined as

u = J#(ẍd +Kd(ẋd − ẋ) +Kp(xd − x))− J̇q,

whereẍ, ẋ, x are the acceleration, velocity and posi-
tions in task space,J# is the Moor-Penrose generalized
inverse,Kp, Kd are gains with empirically determine
values 1000 and 160. The reference trajectoryxd has
been selected as

xd1 = 0.2(cos(t) + sin(2t)),

xd2 = 0.15(sin(t) + cos(2t)).

In the first three steps, we have made a simulations
using the complete model of the planar manipulator
including Columbic and viscous friction. The model
was tested with an ideal friction compensation (Per-
fect comp.), with a friction compensation using NN
(Comp.) and without any friction compensation (No
comp.) as shown in Fig. 9. For the NN friction model
the results presented in Fig. 6 were used. We can see
that the mean square error (MSE) between the desired
and the actual value ((xd − x)2) is in the case of per-
fect model and of the NN based friction model close to
zero. However, the in case, where the friction was not
compensated the MSE was significant (see the bottom
plot on Fig. 9).
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Fig. 9 Tracking results from simulation in the top plot,
wherexr is the reference trajectory (-),xN are results
using NN friction model (–),xw are results without
compensating friction (...) andxi are the results with
ideal friction compensation (-.-). The same is valid for
the bottom plot where the MSE is shown



In the fourth and the fifth step we have used the same
approach, excluding the approach with the prefect fric-
tion compensation, which is on a real system impos-
sible to obtain. For the NN based friction model the
results presented in Fig. 7 were used. The positions and
tracking MSE are shown in Fig. 10. Again we can see,
that in the case, where friction model was not used, the
tracking results are poor.
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Fig. 10 Tracking results from real experiment in the top
plot, wherexr is the reference trajectory (-),xN are
results using NN friction model (–) andxw are results
without compensating friction (...). The same is valid
for the bottom plot where the MSE is shown

By comparing the simulation and real experiment aver-
age MSE we can conclude that the results are similar in
both cases for included compensations as well as with-
out the compensation (see Tab. 1). Furthermore, the
average MSE between perfect friction model and NN
based friction model, are almost identical. Hence, the
model based on NN can reproduce the exact friction be-
havior.

Tab. 1 Average MSE error for tracking experiments
with different friction models for friction compensation

Simulation Real robot
Perfect
comp.

Comp. No
comp.

Comp. No
comp.

MSE 0.0014 0.0016 0.0248 0.0071 0.0291

4.2 Gravity identification - (g(q))

When the robot kinematics is known in advance, the
calculation of the gravity compensation torque is usu-
ally analytically and computationally undemanding.
The parameters used for the gravity compensation are
usually taken from technical documentation or deter-
mined through least-square based techniques. These
different techniques are usually difficult to implement
due to the limitations, e.g. the kinematic error and the
compliance in the harmonic drive system could not be
directly measured without an output axis resolver mea-
surement. Therefore, such techniques always include
some error due to the lack of sufficient information to
full characterise the state of the system.

The gravity compensation is a multi-dimensional prob-
lem, which depends on the number of DOFs. The inter-
action between separate axes is significant and can not
be avoided by separating the problem into individual
axes as in the case of the friction compensation. There-
fore, it is necessary to use multiple dimension inputs
and outputs for the NN. To demonstrate the applicabil-
ity of the proposed NN structure we a use planar manip-
ulator (Fig.4) where the base was rotated for 90 degrees
in such a way that the gravity effect was significant for
all four joints.
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Fig. 12 Simulink block diagram of the joint control of a
planar manipulator with gravity compensation

To verify our NN base gravity model for the planar
manipulator, we fed-forward the compensation torques.
Fig. 12 shows the Simulink block structure of the sys-
tem with control algorithm defined as

τu = ĝ(q) +Kp(qd − q),

whereqd is the desired joint angle,̂g(q) is the grav-
ity model based on NN andKp is a gain for position
controller. The value ofKp = 0.025 was determined
empirically.

To get the required data for learning the NN the follow-
ing assumptions ware made: the velocity is constant,
acceleration is zero, and the term (B(q)q̈) in Eq. 2 can
be neglected. To decrease the friction effects we have
averaged the torques for up and down movements.

To determine the gravity relationship for the joints of
a planar manipulator, each joint of the robot was com-
manded to move at a low constant velocity up and down
at different angles (0 to 2π with a step of2π7 ). For each
movement the mean torque value was calculated using
the above assumptions. The acquired data, a total of
74 torque-velocity pairs per joint, was used for learning
the NN, with 4 inputs and 4 outputs. For this particular
case, a 25 hidden neurons in NN was used. The number
of hidden neurons was determine empirically.

The simulation results of the ideal gravity compensa-
tion and gravity compensation based on NN are given
in Fig. 14. We can see that the NN based gravity model
behaves almost exactly as the ideal model. This shows
that model based on NN is able to successfully identify
the exact gravity torques. If we compare this results
with the results, where the gravity compensation was
excluded we can see that the P-control-loop is not able
to compensate the gravity effects, and therefore the er-
ror between the desired and the actual joint angle was



x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

A

B

C
g

t=0 s t=1.5 s t = 3 s t=4.5 s t=6 s

t=0 s t=1.5 s t = 3 s t=4.5 s t=6 s

t=0 s t=1.5 s t = 3 s t=4.5 s t=6 s

Fig. 11 Time sequence of simulated joint tracking results for all four joints with: A) ideal gravity compensation,
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significant (see Fig. 13). In Fig. 11 the results are given
for three cases: A) ideal gravity compensation, B) grav-
ity compensation based on NN and C) without gravity
compensation.
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Fig. 13 Simulated joint tracking results for all four
joints without gravity compensation

We have shown that, by separate approach for determin-
ing the compensation torques for friction and gravity,
the NN can accurately reproduce the behavior of fric-
tion effects or gravity effects. However, if we would
like to identify the complete model with a single NN,
huge data set for learning would be required. The size
of the leaning data set would be at leastx(a∗DOF ),
where x is the number of measurements for a single
joint anda is the number of measured quantity for each
joint, e.g. the acceleration, the velocity and the posi-
tion.
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Fig. 14 Simulated joint tracking results for all four
joints with ideal gravity compensation (-) and with
gravity compensation based on NN (–)

5 Conclusion

In this paper we presented an approach for the modeling
and the identification of the dynamic model based on
neural networks. Presented experiments showed that
the statical neural networks can be efficiently used for
learning the properties of the robotic system.

Although, the use of the neural network was success-
ful in all experiments, only the identification of fric-
tion shows practical usefulness. Namely, the learning
data set for a robot manipulator with many degrees-of-
freedom, may become very huge and therefore it is not
always possible to obtain all the data required for the
off-line NN learning process.

Our further work will focus primarily on the search for



suitable adaptive neural networks, which will be use-
ful for modeling the dynamics of the robot during the
operation.
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