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Abstract  

Today road transport models (microscopic, mesoscopic and especially 
macroscopic) are not respecting influence of driver mental processes or are 
strongly simplifying them. Human brain processes uncertain information from 
imprecise sources on the base of incomplete model of environment, other driver 
behaviors, skills and features, traffic situation, etc. The big problem of today 
development is to model human reasoning under conditions of incomplete, 
imprecise, insufficient or vague information and to bring human mental models 
and human information processing into our transportation models. It limits today 
models predictive capabilities. This paper presents novel rule-based description 
extending well known Takagi-Sugeno-Kang system and implementing Interval 
Valued Fuzzy Sets. The main difference to standard Takagi-Sugeno-Kang rule 
system is that left side of the rule does not describe position of one singleton but 
whole set of parameters determining positions of fuzzy number landmarks. Non-
standard interpretation of resulting fuzzy set called granulation replaces usual 
defuzzyfication to improve understanding of uncertainty of the result. The 
system is used for human driver mental model development to improve today 
road transport systems because it is able to describe change of uncertainty. For 
example, uncertainty of future trajectory of neighborhood car changes with 
quality of street surface, speed weather conditions, etc. 

Keywords: Transport modeling, Mental models, Fuzzy set, Rule, Fuzzy linguistic 
variable, Granulation. 
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1. Introduction 
Today road transport models (microscopic, 
mesoscopic and especially macroscopic) are not 
respecting influence of driver mental processes or are 
strongly simplifying them. Human brain processes 
uncertain information from imprecise sources on the 
base of incomplete model of environment, other driver 
behaviours, skills and features, traffic situation, etc. 
One (not only) way of studying its behaviors is the 
application of second order fuzzy sets which are ready 
to describe both possibilistic and probabilistic 
uncertainty (see [1]). Because the application of 
second order fuzzy sets is complicated and unintuitive 
and because many problems are easier described by 
set of rules than by set operations, in this paper 
different approximation will be used. There are two 
so-called interval valued fuzzy sets theories: First of 
them are Intuitionistic fuzzy sets [2], which are based 
on the idea of membership and non-membership 
functions. The main problem is, that there is not 
always explained where do these two membership 
functions come from. Second approach is based on 
idea of upper and lower estimation of membership 
function position. These Interval-valued fuzzy sets 
were introduced independently by [1], Grattan-
Guiness [3], Jahn [4], Sambuc [5], in the seventies, in 
the same year. The work [6] suggests natural way how 
to explain origin of these two limits on the base of 
implication operation features. Both approaches are 
equivalent, as it is presented by a lot of works; see e.g. 
[7]. 

2. Novel model outline 
The main advantage of interval valued fuzzy sets 
(IFS) in modeling is their respect to the fact that 
partially untrue rules tends to raise of second kind of 
uncertainty – probabilistic (stochastic) uncertainty. 
Because fuzzy rule sets are used in system modeling 
as universal approximators, where only typical 
situations are described explicitly in the form of rules 
and the rest of features and behaviors is approximated, 
this feature allows more precise modeling of 
uncertainty in driver reasoning process. Unfortunately, 
e.g. in driver reasoning modeling, the used set of rules 
is incomplete and thus, the precision of interpolation 
and conclusions based on it is limited and it is need to 
model this uncertainty. In many situations as human 
operator mental model description it is also need to 
use partially untrue rules which tends to uncertainty of 
conclusions due to features of implication. This 
situation directly produces probabilistic uncertainty of 
fuzzy model conclusions. 
Many researches incorporate Takagi - Sugeno – Kang 
(TSK) model, see [8] and [9]. This model is popular in 
the area of fuzzy modeling and it is based on idea of 
singleton (double of crisp value and membership 
value or single element fuzzy set). Precise position of 
the singleton is determined by linear algebraic 

function and while standard fuzzy rule has the form 
(1) the TSK rule has form (2): 
 
IF <fuzzy proposition> THEN <fuzzy proposition>  
     (1) 
 
IF A is a and … and Z is z THEN y=f(A,…,Z)  
     (2) 
 
TSK models were developed for application in such 
control systems and models, where output variable is 
defuzzyfied, where no information about uncertainty 
and its distribution is required. Unfortunately, they are 
not frequently used in transportation models, where 
from historical consequences (macroscopic models, 
data analysis) probabilistic models are preferred. 
Theory of fuzzy rule based reasoning system based on 
interval valued fuzzy sets is not developed yet, thus 
this paper will be presented such novel system. At 
first, it is need to define n-parameter fuzzy number. 
This definition will help us to form IFS Rule Based 
Model. Then we will briefly discuss interval valued 
fuzzy sets. On the base of this discussion, IFS Rule 
Based Model will be formed. 

2.1. N-parameter fuzzy number 

Each fuzzy number is n-ary projection from universe 
space nU  into real number interval <0,1>. It is 
possible to describe it as function of n parameters. 
Standard fuzzy numbers which do not change its 
position are functions of 0 parameters non-looking 
that they are singletons, triangular, rectangular or any 
else fuzzy numbers. In standard TSK models, 1-
parametric fuzzy numbers in form of position 
changing singletons are used. Presented model differs 
in use of n-parametric fuzzy numbers changing not 
only position, but the shape too. Fig. 1 and 2 bring 
examples of 1 and 2 parameters fuzzy numbers for 
arguments taking magnitudes 0, 0.5 and 1. 

2.2. Interval Valued Fuzzy Sets 

Presence of more than fifty logical system in Fuzzy 
Logic, the most known are listed in Table 1, 
underlines hidden ambiguity in fuzzy set definition, 
which tends not only into definition of so-called T-
norms (generalized intersection) and T-conorms 
(generalized conjunction) but rises probabilistic 
uncertainty of some results. As solution, it is possible 
to accept above mentioned interval valued fuzzy sets, 
where implication on the base of partially untrue rule 
generates whole set of solutions. 
IVFS enables to model situations, where more 
solutions of one given problem are possible. It is 
possible to apply IVFS to model uncertainty 
concluding from operator observation, especially 
when this observation is incomplete and when rules 
are partially incorrect. Such situations are frequent 
especially in road transport, where cognitive ability of 
the driver are limited and in some situations 
insufficient. 
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Fig. 1: An example of 1-parameter fuzzy numbers (position changing singleton in style of TSK model, shape and 
gravity centre changing triangular fuzzy number and fuzzyness changing trapezoidal fuzzy number).   
 

Out[106]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

 
Fig. 2: An example of 2-parameter fuzzy number (triangular fuzzy number moving peak position and fuzzyness). 
 
Tab. 1: Examples of fuzzy implications in most 
frequently used fuzzy logical systems 
Larsen    x → y = xy 
Łukasiewicz   x → y = min{1, 1 − x + y} 
Mamdani   x → y = min{x, y} 
Standard Strict   x → y =  1 if x ≤ y 

 0 otherwise 
Godel    x → y =  1 if x ≤ y 

  y otherwise 
Gaines    x → y =  1 if x ≤ y 

  y/x otherwise 
Kleene-Dienes   x → y = max{1 − x, y} 
Kleene-Dienes-Łuk.  x → y = 1 − x + xy 

2.3. IVFS Rule Based Model 

TSK models were developed for application in such 
control systems and models, where output variable is 
defuzzyfied, where is required no information about 
uncertainty and its distribution. Theory of fuzzy rules 
based on interval valued fuzzy sets with fuzzy number 

left side is not developed yet, thus this paper will be 
based on the following propositions: 
Singleton is a special case of fuzzy number. In 
presented novel IVFS Rule Based Model (IVFS-
RBM), unlimited shape fuzzy numbers described by 
list of landmarks will be used. Because position of 
each landmark is described by particular function, 
presented rule system gives chance to control and 
change shape of fuzzy number in relation to fuzzy rule 
input attributes. 
List of landmarks is computed on the base of 
corresponding list of functions and TSK system (2) is 
a special case of single element function and landmark 
lists and thus a special case of presented rule system. 
Fuzzy Numbers of n-th order are in the IFS-RBM 
system described as (3), where symbols ai are 
representing landmarks of fuzzy number (e.g. in the 
case of triangular fuzzy number they can represent 
leftmost, peak and rightmost values) and μ is the 
membership maxima magnitude, see Fig. 1 and 2 too. 
 



 TFNn: ( )μ,,, no aa K  (3)  
 
Definition 1: IVFS-RBM uses rules in the form 
represented as (4),  
 

IF ( )ii
i

ax =U
r

THEN
μ

 ( ) ( )( )nmn xxfxxf ,,,,,, 000 KKK  (4) 
 
Where 
xi means crisp input variable 
ai represents linguistic value 
fi is output crisp function denoting position of 
i-th landmark of proper output fuzzy number TFN. 

rμ  measure of rule truth/validity 

3. Granulation 
Within the presented IVFS-RBM system, granulation 
is used on the place of traditional defuzzyfication. 
Defuzzyfication transforms uncertain data produced 
by rule based model to base type, typically real 
numbers. There are known many forms of 
defuzzyfication; probably the most frequent in T-S-K 
models is weighted average, see (5) 
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where 
r is defuzzyfied output real magnitude 
xi represents significant magnitude of i-th 
linguistic value, e.g. centre of gravity 
μi represents membership of i-th linguistic value 
 
The main aim of IVFS-RBM is to achieve uncertainty 
description (information about uncertainty amount and 
distribution) in decision process. Thus, it gives no 
advance to use standard defuzzyfication in presented 
system due to big lose of information about 
uncertainty distribution and character in this output 
normalization. In presented system is used granulation 
of the information. It is transformation of the result, 
which maps result in form of fuzzy number into 
standard representation via predefined fuzzy linguistic 
variable. This transformation enables use of results in 
further reasoning, e.g. in expert systems, mental 
models, or even reactive systems in robotic sense as it 
was firstly published by Brooks [8] (robotic control 
schemes are usable in drivers models in advanced 
microscopic simulators). 

Fuzzy linguistic value is described with respect to its 
original Zadeh’s description [1] by definition 2: 

Definition 2. A linguistic variable V is a quintuple of 
the form 

V = (N,G,T,X,S), 
where N,T, X, G, and S are defined as follows: 
1. N is the name of the linguistic variable V; 
2. G is a grammar; 
3. T is the so-called term set, i. e. the set linguistic 
expressions resulting from G\ 
4. X is the universe of discourse; 
5. S is a T —> F(X) mapping which defines the 
semantics of each linguistic expression in T. 

There are many ways how to define granulation 
operation, because representation by fuzzy number 
contains more information than representation by 
linguistic variable. E.g., it is possible to apply 
intersection operation, see (6) and following definition 
3: 
 
Definition 3: Granulation operation transforms fuzzy 
number FN described by membership function 

( )xFNμ  into fuzzy linguistic variable FLV, see 
previous definition 2. Intersection based granulation 
calculates intersection of ( )xFNμ  and membership 

functions ( )xkFLV μ  of each linguistic value k of the 
variable FLV:  
 
 ( ) ( )( )xxk FNkFLV

x
kFLV μμμ ∩=∀ max: , (6) 

where kFLV μ is membership to linguistic value k of 
linguistic variable FLV. Such definition describes the 
rise of ambiguity which cannot be solved within first 
order fuzzy sets and requires IVFS description. E.g., 
fig. 3 shows two different situations for which 
granulation gives equal results, approximately μk=0.85 
for both linguistic values. 

3.1. IVFS extension of granulation 

Relation (6) represents pessimistic or lowest possible 
magnitude of memberships to linguistic values. 
Maximal possible membership might be estimated as 
maximum of fuzzy number membership in interval of 
values x given by linguistic value support, see (7). 
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xkFLV μμ
μ

μ ,max
I

       (7) 

3.2. Granulation features 

Standard granulation as it is described by (6) is not 
unambiguous. Relation (7) is not explicit too, because 
it maps this uncertainty only.  
It the moment when memberships to linguistic values 
are known, it is impossible to distinguish which fuzzy 
number was granulated, as it is presented by fig. 3. 
IVFS extension of granulation tries to cover all 
possible fuzzy numbers. 
 



 

 
Fig. 3: Ambiguity in granulation solved within first order fuzzy sets.   
 

4. Driver reasoning model examples 
Driver reasoning modeling, it means formalization of 
driver mental models, represents complicated and 
complex task, which solution might significantly 
improve today knowledge and understanding of 
transportation processes, reliability and precision of 
our models, especially microscopic ones, and give 
them capabilities to predict behaviors and influence of 
future changes of transportation systems. Today 
microscopic simulations are rather ready to animate 
previously measured transportation situation or to 
model influence of small changes of transportation 
systems. 
Improvement of today microscopic models requires 
formalizing of human cognitive and decisioning 
making processes. Unfortunately, human cognitive 
capabilities are strongly limited both by nature 
(human body, nervous system, health, tiredness, and 
training) and by car design (dead zones, requirement 
to solve more tasks in parallel). Today traffic also asks 
to divide driver attention between many neighborhood 
cars, traffic signs and other information sources. On 
the opposite side, human brain is capable to keep in 
short term memory only small number of ideas, 
objects and plans typically estimated as well known 
number 27 ± . 
Today attempt in this area was limited by our models 
and related knowledge representation. Big problem 
brings uncertainty of measured data given by limited 
precision of our cognitive processes, incompleteness 
of data caused also by limitation of human brain 
processing capacity [9], ignoring of some facts due to 
attention focusing etc. This uncertainty is both 
possibilistic and probabilistic, thus the representation 
capable to represent both of them is required. 
Second significant problem is given by parallelism of 
input stimuli and concluding requirement of assigning 
priority to each task, modeling process of task 
switching and canceling, influencing of one task by 
another, especially through emotional reasoning. 
Another problem is given by two faces of human 
reasoning. Solving well known problems we use 
simple conditional reflexes, as it is described in the 
work [8]. In the case of more complex problems, 

complex reasoning process is activated. This process 
consists of many kinds of reasoning as logical 
reasoning, abstraction and decomposition, analogical 
and metaphorical reasoning, paradoxical reasoning, 
etc, see [10]. 
Many of these reasoning schemes are not 
straightforward and tend to complicated reasoning 
process consisting of many level nested loops and 
optimization processes. The most significant 
conclusion to driver reasoning process modeling is 
that driver are not ready to find optimal solution, 
because car driving is real time process and time to 
decision is limited. Frequently, reasoning process 
stops before finding of the optimal solution and the 
solution is replaced by suboptimal one discovered 
within constrained time. 
Presented interval valued fuzzy set rule based model is 
based on first order logic and thus it is applicable in 
above mentioned kinds of reasoning. As an example it 
will be applied to part of driver reasoning model – 
model of car speed change in the case of oncoming car 
meeting. 

4.1. Oncoming car meeting driver reasoning model 

In the case of oncoming car meeting drivers reason if 
the correction of the speed is need or not. Requirement 
of the speed correction (speed decreasing) depends on 
feeling of threaten (on probability and possibility of 
collision risk). 
Driver analyses in his decision process such features 
of the situation as road surface quality q, speed of own 
car st, speed of oncoming car sn (and thus relative 
absolute speed sr of the cars), width of free corridor w 
for own car, estimated quality of ongoing car diving 
(degree of motion control) eq, distance (or more 
precisely time td) to meeting point, etc. Each of these 
input variables is in presented model represented as 
fuzzy linguistic variable, see Fig. 4-10: 

 
Fig. 4: Road surface quality q. 
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Fig. 5: Speed of own car st. 

 

 
Fig. 6: Speed of oncoming car sn. 
 

Fig. 7: Relative speed sr of the cars. 
 

Fig. 8: Width of free corridor for own car w. 
 

Fig. 9: Time td to meeting point. 
 

Fig. 10: Estimated quality of ongoing car diving eq. 
 
State and output variables of the model are sufficiency 
of free space sf and risk of negative change r. They are 
outlined by Fig. 11, 12 and 13 : 
 

Fig. 11: Sufficiency of free space sf. 
 

Fig. 12: Risk of negative change r. 
 
 

Fig. 13: Speed correction ∆v. 
 
Set of IVFS-RBM rules describes relationships 
between variables and consist of following rules (8-
10): 
The speed correction is function of sufficiency of free 
space sf and risk of negative change r. It implies 9 
rules (2 variables of 3 linguistic values each), see (8) 
for right hand functions of rules: 
Suff.\risk small medium Risk 
Insufficient (-max,-

max,-max) 
(-max,-
max,-max) 

(-max,-
max,-max) 

Sufficient 0 (-risk,-
risk/2,0) 

-risk 

plenty (0,(max-
risk)/2,max) 

(-
risk,0,max) 

(-risk,0,0) 

  (8) 
The risk of negative change r is function of estimated 
quality of ongoing car diving eq, relative speed sr of 
the cars, speed of oncoming car sn and road surface 
quality q. Fortunately, the relation was identified to be 
linear and thus original set of 256 rules might be 
reduced into single rule (9): 
 
IF eq AND sr AND sn AND q THEN 

( )
( )q

nr

eqk
sskr

++
−∗

=
2

1    (9) 

 
Parameters k1 and k2 are chosen to fit r in interval 
<0,1>. 
 
The sufficiency of free space sf is a function of width 
of free corridor for own car w, speed of own car st.and 
road surface quality q. Combination of linguistic 
values of these variables implies 48 rules but it is 
possible to reason q and st. as linear numeric 
parameters and to reduce rule set into three rules, see 
(10): 
sf insufficient sufficient plenty 
 W=impossible W=small/st/q W=good/st 
     (10) 
Because all arguments are fuzzy numbers, also the 
result will be fuzzy number. 
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4.2. Experiment 

 
We will reason following model situation described 
by following magnitudes of model variables: 
Q = average 
St= 90 km/h 
Sn= street 
Sr=high 
W=small 
Td=sufficient 
Eq=acceptable 
On their base it is possible to compute resulting 
magnitudes, sufficiency of free space as the first: 

⎭
⎬
⎫

⎩
⎨
⎧

=
goodsmallimpossible

w 0,1,0
 (11) 

Thus 
Sf={0/impossible,(0,1,2):μ=1/sufficient,(1/90,2/90,∞)/
plenty}     (12) 
 
The risk of negative change r is computed on the base 
of estimated parameters 120/11 =k  and 12 =k . 
Applying (9) we obtain fuzzy number whose 
defuzzyfication into linguistic variable r produces 
result (13): 
 

⎭
⎬
⎫

⎩
⎨
⎧

=
bigmediumsmall

r 81.0,27.0,0
(13) 

 
On the end, speed correction ∆v is determined on the 
base of rule set (8). This rule set produces 9 triangular 
fuzzy numbers but membership of many of them is 
equal to zero, see (14): 
Suff\risk Small, μ=0 Medium, 

μ=0.27 
Big, 
μ=0.81 

Insuff., 
μ=0 

   

Suff., μ=1  (-1,-0.5,0), 
μ=0.27 

(-1,-1,-1), 
μ=0.81 

Plenty, 
μ=0 

   

 
The interpretation of the result depends on 
psychological profile of the driver. For example, 
rational driver selects first maxima of resulting unified 
fuzzy number, pessimistic driver takes most 
constraining solution, optimistic driver chooses the 
less constraining version, etc. 
 

5. Conclusion 
Presented paper describes novel approach to interval 
valued fuzzy sets modeling based on extension of 
Takagi-Sugeno-Kang model and implementation of 
novel granulation operator. On the base of this model, 
the driver reasoning model application is presented. 
This model is of course limited and it will be 

extended, precisiated and verified in following 
research, but the first results are in relation to 
measured data and the model will be included into 
experimental microscopic road traffic simulator.   
It is also significant that model enables mixing of 
numerical and linguistic magnitudes in coherent 
system. 
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