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Abstract

Use of biomass in industrial boilers requires meffecient control systems. In
order to keep constant and undisturbed technolbgieam production for large
changes in the operating conditions more processwletdge must be
incorporated into the system. Control of the biosnstgam boiler system often
needs an experience operator intervention. In #é@cplar case the operator
based on presented process data manually cortteoipply of the biomass and
change primary air temperature and flow in to tbenlsustion chamber. Local
control loops increase the degree of automationaasdre safety technological
steam production. In order to minimize operatoenmmention and to stabilize
technological steam production a Fuzzy controkamss to be ideal solution.
The paper shows an implementation of the Fuzzyrabaystem that improves
and optimizes a technological steam productionhef biomass steam boiler
system. The analysis and identification of realcpss data give promising
mathematical model that was used for the developwiesn appropriate control
algorithm in simulations. Recurrent auto-assocetiveural network model
improves state space model in wider range of medsdiata. After small
adjustments a Fuzzy controller was successfullfiempnted on real Biomass
Steam Boiler System.
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. control values in the process and also closed loop
1 Introduction measurements.

efficient control systems. In order to keep coristan
and undisturbed technological steam production for koreicaiier
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large changes in the operating conditions more L)
process knowledge must be incorporated into the ===
system. Control of the biomass steam boiler system #
often needs an experience operator interventianifl] |
the particular case the operator based on presentec
process data manually controls the supply of the
biomass and change primary air temperature and flow
in to the combustion chamber. Local control loops .. ,
increase the degree of automation and assure safety e
technological steam production. In order to minimniz
operator intervention and to stabilize technologica
steam production a Fuzzy controller seems to balide  Fig. 1 SCADA snapshot of fuel feed system,

solution [2]. combustion chamber and steam boiler system.

= 20
o 38
P

CRERENE] [ el ] e ] ] [ (]

The development and adaptation of an appropriafel Real time measurements

fuzzy cc_)ntrol_ algorithm can't be dqne directly venil All needed measurement data has been imported and
production is running. For this purpose th&,majized from SCADA Historian. Fig. 2 , Fig. 3dan

mathematical model of ~ technological steanj, 4 ghows imported normalized combustion
production is needed. Based on measurementdata%lp] mber temperature and normalized steam

appropriate system i_dentification techniqueg blaok ..production changes during manual and automatic
modelg may Q(_ascnbe the system well in specifi ontrol of steam boiler system.
operating conditions.

1.05 T T T T T T T
2 Steam Boiler System 1/ 1
A steam boiler system basic data: o5l - — o T 4 ,]“«;I I 'l
;i;c' : ol
Steam: osf——1 i A0
* power ~ 1I5MW, O_SSJL
e production ~ 20t/h, ;
e pressure ~ 450 kPa and L
e temperature ~ 435 °C. P N
Fuel ! !
. . 0.7 | |
* wood lignin, 25 8 85
* wood biomass,
« sawdust and Fig. 2 Normalized combustion chamber temperature
+  polymer. and steam output based on fuel dosage step changes.
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Fig. 1 shows SCADA snapshot as it appears in real
technological steam production. Operator manually *

LPri dir fl
- arPrimary dir flow

controls speed of fuel supply CV1 [Hz], desired | _ MI '*'L'ﬂi’:‘%ﬁf lmmm
temperature of primary air CV2 [°C] and primary air - HeeH T LJ U,H Ifj il
flow speed CV3 [Hz] while monitoring combustion osf---- IR T - T ‘—713”4 L .

chamber temperatures Tul, Tu2, Td1, Td2 [°C] and ; ; ;
technological steam production flow Qs [t/h]. The®®[ """/~~~ 7 " T inT T T T
automatic control of the secondary air flow is regbd 5l ___ " ___ Jseeam pr#dmm,? ,,,,,,,,,,,,,,,
to control the combustion chamber wall temperature.
There is also automatic control of steam pressnce a °75 -~ -

negative air pressure inside the chamber.

0'5.5 3‘ 3.5 4‘1 4.5 é 5.5 6
3 System Identification

Fig. 3 Normalized combustion chamber temperature
d steam production output based on step fuebgosa
hanges, step primary air flow changes and primary
air temperature changes.

The system identification is based on real proce
measured data. We made small step changes of a



1.05 T T T

[N

To Td2

0.9

o

0.9

0.85

0.8

0.75

To Qs

0.7

ime [s]

Fig. 4 Normalized combustion chamber temperature
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and normalized steam production in normal operationfig. 6 Step responses of identified state spaceemod

All measurement data obtained by Historian has been
analyzed and passed through the

procedure to obtain a model. s

3.2 ldentification of state space linear model .

The linear mathematical model of a steam boiler
system has four input and two output variables as
depicted in Fig. 5.
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Fig. 7 Simulation of combustion chamber temperature

and steam production based on identified model of
steam boiler system.

Fig. 5 Steam production model with corresponding
inputs and outputs,

Input variables:

Frequency of the fuel dosage motor Fd [Hz],
Primary air temperature Tp [°C],

Primary air flow Qp [m3/h] and

Frequency of the motor for the secondary ai 1o}
flow supply Fs [Hz].

.
Measured Output and Simulated Model Output

. 1120 T T T T T

1080+

Output variables: S 10601 |
« Combustion chamber temperature Td2 [°C **| ]
and 1020} |

* Steam production Qs [th]. T N TN R Tt

The Matlab identification procedure pem.m a
prediction error estimate was used for the stateesp
model estimation. Best identification result was
achieved with measured data shown in Fig. 4 whe
normal operation of steam production was consideres

Fig. 6 and Fig. 7 show step responses of an idedtif
state space model simulation. Fig. 8 shows vabdati
of identified state space model on measured ddta. T
steam production model does not precisely match  Fig. 8 Comparison of combustion chamber
measured data but it has good dynamic behavior andmperature and steam production based on idehtifie
precise static values according to a measured ones. model and measured data.
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3.3 Recurrent auto-associative neural network values and standard deviation, where values were
model defined upon input data specifics. After successful
. . training, the AANN was defined by 15 neurons in
T e e e, o igoping and g mapping lyer,botineck ayerna
P j P ﬁ%urons, and input/output layers were measured
type of neural network can be used called an autQ-

0,
associative neural network (AANN) which is a feed-values of the process. 70% of measured data samples

i 0,
forward neural network that performs identityWere used for modeling and 30% were used for

mappings; network inputs are reproduced at themutpvahdatlon'

layer. To obtain model of the process according t 1120
measured values a classic AANN can be use | ;|
However we wish to observe dynamic behavior of th 1
process, therefore a use of recurrent AANN wa  jpanf I i 5
suggested latter [3]. E R R

The AANN normally consists of an input layer, three " ' R W1t vk E:i B
hidden layers, and an output layer. The input/dutpt & 1w 1 5 i A
layers can have an identical number of neurons, b i f
not necessarily. The first/third hidden layer idlezh

mapping/demapping layer, respectively, and usual il
contains more neurons than input/output layer. Tt

o Y LY. b: - 1

middle hidden layer is called the bottleneck lawéh 980 e e model |
strictly less neurons than input/output layer. Th ' risas e

transfer functions for the mappings/de-mappings ai 3 32 34 28 38 4 42 44 46 468 &
non-linear whereas the transfer function for th Time (ample time 5¢) o’

bottleneck and output layers can be linear or nor
linear. The number of hidden neurons in all thre
hidden layers of the network is very important las t =i
compression role of the network reduces network’ i
accuracy and increases output error.

The key feature of the AANN is its data
compression/regeneration by the bottleneck layke. T 5 251
input, mapping, and bottleneck layers compress tt & gl
input information to a lower dimension, after which
the de-mapping and output layers recover the ma
underlying features of the original information. €rh 7t
bottleneck layer can be used to extract generaliz(
characteristics of the process, and can be trezteal
method for extraction of nonlinear principal 15 P .
components. The main task is to select the prop
number of neurons in the bottleneck layer, whicl
represent the system behavior, and to observe model Fig. 9 Comparison of combustion chamber
correlations between variables by using extractetemperature and steam production based on idehtifie
nonlinear principal components. The AANN also has model and measured data.

to be prope_rly trained to produce desired outpluts. Steady state model (Fig. 9) obtained by AANN
network training both input and target vectors arg

. . - . Structure is very accurate for a wide range of data
identical, where the objective function, mean sqdar . , ; )
. however it doesn’t describe dynamics of the process
error between the network outputs and inputs, is .
L adequately as variables has changeable delays,
minimized. . : ! i
sampling times, dynamics, etc. To incorporate
Several training procedures and neural networttynamics into developed model of the process a
parameters settings were tested to obtain desiregturrent AANN structure was suggested where
results. The sampling time used was 5s, due twtputs are taken back to the input layer. Thisfbas
reduced computational complexity of training and #he consequence that the neural network is noy full
large number of data samples from procesauto-associative because additional past inputheof
measurements (fairly slow process changes). Netwopkocess are required and that vector of inputsois n
training was conducted upon different data prenecessary identical to the vector of outputs. Haxev
processing methods. First case was the usual pthee neural network is auto-associative with respect
processing where output data is normalized to fthe output variables. The number of neurons in the
output range interval between -1 and 1. In the s&coinput and output layers is determined by the stimect
case pre-processing was realized according to meahthe process model.
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Fig. 10 A recurrent AANN with delayed input intceth T Gangleineig 1
model to form dynamic behavior of the temperature
Tk2. Similar goes for steam production output
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The architecture of the dynamic AANN is modified as
presented in Fig. 10. The output of the network
delayed a number of times, is fed back to the inpi £
layer so that both process temporal and spatise et 170}
are incorporated in the structure of the recurret
AANN. For this case, the neural network is auto

1075

1065 F

associative only for the current output variabkesd gl
obviously only the current measurements ar T
processed at each sampling time. The recurre Time {sample time 5¢) i

AANN model structure was reduced to 10 neurons in_ ) .
mapping/demapping layer and in bottleneck IayerF'g' 12 The top figure presents dynamic response of

were 5 neurons and due to the complexity and numbépe model combustion chamber temperature upon the
of neurons the training procedure had to be repieate'n'_OUt step _change where temperature of the primary
several times to achieve best results. For training"]glr was_ralsed for 10f(;1.The lower T'%lljre presents
algorithm a Levenberg-Marquardt back-propagation ynamic response of the same variable upon step
was used. Neurons of input and hidden layers wefgange of fuel injection (motor speed) into thenage
nonlinear “tansig” activation functions, while outp for 1 Hz.

layer had linear output.

. , 4  Fuzzy controller design
Properly trained AANN produced a fairly good

dynamic model of the process. Comparison betwedifsed on observations during normal operation and
final recurrent AANN model output and operator assistance the Fuzzy controller has been
measurements is shown in Fig. 11. Dynamigesigned for both combustion chamber temperature
properties are shown in Fig 12 where several inpgontrol and steam production control. The Fuzzy

step changes were simulated and tested. control system has four input and three output
variables.
1160 . , : , , , , , ‘ Input variables:
s | e Combustion chamber temperature error ETd2
[°Cl.
R ’ » Combustion chamber temperature trend dTd2

1100} B . [°C/s],
i N A = »  Steam production deviation eQs[t/h] and
e Steam production deviation dQs[t/hs].
Output variables:
» Deviation of a fuel dosage motor frequency
« dFd [Hz/s],

1000 ¢ 8 e Deviation of the primary air flow motor
wf e model | | frequency dFp [Hz/s] and
S il .. . .
S - Deviation of the primary air temperature dTp
39 395 4 405 41 415 42 425 43 435 44 [OC/S]
Time (sample time 5g) + 1t ’

. _ All input and output variables have three membegrshi
Fig. 11 Comparison between recurrent AANN modelynciions equally distributed. A Fuzzy inference

output and measured combustion chamber  gngine consists of 21 rules that completely descaib
temperature.



operator assistance needed for successful control ig. 14 shows simulation results while using desdyn

steam production and temperature control (Fig. 13).

JIf (eT2 is M) and (dT2 is N) then (dTp is N)(dFp is ZE) (1)
If (&T2 is N) and (dT2 is ZE) then (dTp is M)(dFp is F) (1)

_If (eT2 is N) and (dT2 is P} then (dTp is M)(cFp is P} (1)

_If (eT2 is ZE) and (dT2 is M) then (dTp is P)(dFp is M) (1)

_If (eT2 is ZE) and (dT2 is ZE) then (dTp is ZE)(dFp is ZE) (1)

_If (eT2 is ZE) and (472 is F) then (dTp is M)(dFp is P) (1)

_If (eT2 is P} and (dT2 is M) then (dTp is P)(dFp is M) (1)

_If (2T2 is P) and (dT2 is ZE) then (dTp is PY(dFp is N) (1)

If (2T2 is P) and (dT2 is P then (dTp is PY(cFp is ZE) (1)

If (2245 is M) and (d045 is M) then (dFc is ZE) (1)

11. I (2045 is M) and (dQ45 is ZE) then (dFc is M) (1)

If (2245 is M) and (d0Q45 is P) then (dFc is N (1)

_If (2245 is ZE) and (dQ45 is N} then (dFc is ZE) (1)

_If (2245 is 7E) and (dQ45 is ZE) then (dFc is ZE) (1)

If (2245 is ZE) and (dQ45 is P) then (dFc is ZE) (1)

If (2245 is P) and (d@45 is M) then (dFc is P) (1)

If (2245 is P) and (dQ45 is ZE) then (dFc is P) (1)

If (2245 is P} and (dQ45 is P) then (dFc is ZE) (1)

If (2045 is P) and (T2 is ZE) and (dT2 is ZE) then (dTp is P) (1)
If (2045 is M) and (2T2 is ZE) and (dT2 is ZE) then (dTp is N) (1)
21.If (Poctlak is Mizek) then (dFp is M) (1)
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Fig. 13 Fuzzy rules of steam production Fuzzy
controller.
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Fig. 14 Simulation of combustion chamber

temperature and steam production using Fuzzy stea

production controller.
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Fig. 15 Real time results while using implemented [4]

Fuzzy steam production controller.

Fuzzy steam production controller. Simulation resul
show that designed Fuzzy steam controller may be
implemented on real steam production system. For
this purpose some fine adjustments of Fuzzy
controller input and output gains have been doig. F

15 shows real time results while using implemented
Fuzzy steam production controller. Steam production
has been automated and operator assistance has been
minimized.

5 Conclusions

An implementation of Fuzzy control systems is very
convenient for the industry where expert knowledge
of the operator is needed. In order to avoid
unnecessary interference during the production the
design of the appropriate controller must be made i
simulations. Therefore the identification of the
mathematical model of an industrial process haseto
done. This is sometime very difficult because of
varying and non-linear behavior of the observed
industrial process. The identification method ugad
the steam production system modeling gives good
approximation of real steam production system only
for specific operating conditions. Recurrent auto-
associative neural network model improves stateespa
model in wider range of measured data. It has been
shown that the design of a Fuzzy steam production
controller do not need precise mathematical moélel o
non-linear process. It is only important that dyimam
changes shows right direction and static valueshmac
measured ones. Input and output variables of the
Fuzzy controller must be carefully selected andzluz
rules must imitate expert knowledge of the operator
order to achieve a desired control performance.
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