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Abstract

The complex hybrid and nonlinear nature of many processgsatie met in prac-
tice causes problems with both structure modelling andrpater identification;

therefore, obtaining a model that is suitable for MPC ismoftedifficult task. In

this paper we focus on using the hybrid fuzzy model formatatiThe framework
Is suitable for modelling nonlinear hybrid systems and canrbplemented in
model predictive control design. The basic idea of this pagp® present an iden-
tification method for a hybrid fuzzy model based on a fuzzytung algorithm.

In the paper, we first introduce the hybrid fuzzy model. Wespre the hierar-
chical structure and the generalization of the Takagi-8adermulation for the

nonlinear hybrid system and give the output of the hybridyunodel in a com-
pact form. Next, we tackle the identification method. Wetttea fuzzy clustering
algorithm, deal with the projections of the fuzzy cluster®ithe input space of
the hybrid fuzzy model and explain the estimation of the peaters of the hy-
brid fuzzy model by means of a modified least-squares methodhermore, we
verify the usability of the proposed identification apprioan a hybrid nonlinear
batch reactor example. The result suggest that the batctorean be efficiently
identified and thus formulated as a hybrid fuzzy model, wluah eventually be
used for model predictive control purposes.

Keywords: Identification, Hybrid fuzzy model, Batch reactor, Hybrid systems, Nonlinear
systems.
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1 Introduction brid systems is based on (piecewise) linear and equiva-
. ) ) ) lent models. However, such approaches can prove un-
Dynamic systems that involve continuous and discretgccessful when dealing with distinctive nonlinearities.
states are calletlybrid systems Most industrial pro-  since a PWA formulation can only represent piecewise
cesses contain both continuous and discrete compgrfine systems, further segmentation is required in or-
nents, for instance, discrete valves, on/off switches, logjer to suitably approximate the nonlinearity. The new
ical overrides, etc. The continuous dynamics are Okegments introduce new discrete auxiliary variables in

therefore, a special approach to modelling and contrgjigher complexity, often resulting in programs that are
is required. At first this topic was not treated systematicomputationally too demanding.

cally [1]. In recent years, however, hybrid systems have

received a great deal of attention from the computer scft nonlinear modelling approach for MPC purposes is
ence and control community. presented in [8]. The authors introduce an analytical

predictive-control-law for fuzzy systems. The mod-

Model predictive contro{MPC) presents one of the elling and identification methodology is usable for plain
advanced approaches that is widely used in industriabnlinear systems, but not for the structurally more
practice. At first, MPC was only employed in the petro-complex class of hybrid systems. A hierarchical iden-
chemical industry, but it has been constantly gainingfication of a fuzzy switched system [9] is introduced
a reputation of a generally usable approach to a wide [10]. Furthermore, two structure-selecting methods
spectrum of control problems. Lately, MPC has nofor nonlinear models with mixed discrete and continu-
been limited only to slow processes, where there isus inputs are presented in [11]. In [12] a fuzzy control
plenty of time for calculations between successive timemethod is implemented in the low control-level for a
steps, but it has also been gaining ground in the field @fass of hybrid systems based on hybrid automata.
fast processes. That said, when dealing with control . . .
problems involving complex dynamics, computationalg this paper we focus on using the hybrid fuzzy model
complexity still remains the main issue. MPC is basedPrmulation presented in [13]. The framework is suit-
on forecasting the future behavior of a system at eactP!€ for modelling nonlinear hybrid systems and can be
sampling instant using the process model. The confiPlemented in model predictive control design. The
plex hybrid and nonlinear nature of many processes thBgSIC idea of this paper is to present an identification

are met in practice causes problems with both structufBthod for a hybrid fuzzy model based on a fuzzy clus-

modelling and parameter identification: therefore, ob'ing algorithm.

taining a model that is suitable for MPC is often a dif-The outline of the paper is as follows. Section 2 in-
ficult task. Hence, the need for special methods angloduces the hybrid fuzzy model. Next, in section 3
formulations when dealing with hybrid systems is verythe identification method is explained. We verify the
clear. usability of the proposed identification approach on a
nonlinear hybrid batch reactor example in section 4. Fi-

MPC methods for hybrid systems employ sever ally, we give some concluding remarks.
S

model formulations. Often the system is described a
mixed logical dynamicalMLD) [2]. A lot of interest . .
has also been devoted piecewise affingPWA) for- 2 Modelling of a hybrid fuzzy model

mulation [3], which has been proven to be equivaleng,namic systems are usually modelled by feeding back
to many classes of hybrid systems [4]. What is MOr&jg|ayed input and output signals. In the discrete-time
MLD models can be transformed to the PWA form. Theyomain a common nonlinear model structure is the
optimal control problem for discrete-time PWA systemyarx (Nonlinear AutoRegressive with eXogenous in-

can be converted to a mixed-integer optimization pmbputs) model [14], which gives the mapping between the

lem and solved online [5}. On the other hand, in [6]past input-output data and the predicted output.
the authors tackle the optimal control problem for PWA
systems by solving a number of multi-parametric pro-
grams offline. In such manner, it is possible to obtain a .. -
solution in the form of a PWA state feedback law that J»(k +1) = F(y(k), y(k = 1), ... Q)
can be efficiently implemented online. ylk —n+1),u(k),u(k —1),...,u(k —m+1))

The aforementioned methods mainly consider system|_:fere k) gk — 1) (k—n+1) andu(k), u(k
’ Y - yees Y - u 9 -

with continuous inputs, despite the fact that solu: d he delaved
tions based on(multiparametric) mixed integer lin- 1)7":’“(]€_.7n"“1) enote the delayed process output
ear/quadratic programmingmp-MIQP/MILP) can be and input signals, respectively. Hence, the model of the
applied to systems with discrete inputs as well. HowSYStém is represented by the (nonlinear) funcfion

ever, the computational complexity increases drastp 1 Hybrid system hierarchy

cally with the number of discrete states, and so these ) )
methods can become computationally too demandin@.S already mentioned, many processes met in prac-

An algorithm for the efficient MPC of hybrid systems ficé demonstrate a hybrid nature, which means that the
with discrete inputs only is proposed in [7]. continuous dynamics are interlaced with the discrete

dynamics. A special class of such systems is called
Most of the previous work related to the MPC of hy-switched systems, where the continuous states remain



continuous even when the discrete states are changdthe if-parts (antecedents) of the rules describe hybrid
i.e. no jumps of the continuous state vector are alloweduzzy regions in the space of the input variables of the
In this paper we deal with hybrid systems representduybrid fuzzy model. Hereq(k) € {1,...,s} stands
by a hierarchy of discrete and continuous subsystenfier the discrete state of the nonlinear hybrid system,
where the discrete partis atop the hierarchy. A discretge., its operating modeQ, and A{ represent (fuzzy)

time formulation is described in egs. (2) and (3). sets characterized by their crisp and fuzzy membership
functions, respectively.
x(k +1) = fy(x(k), u(k)) (2)  The number of relevant rules in the hybrid fuzzy model

is K - s. Generally speakingk depends on the num-
ber of fuzzy membership functions for each antecedent
q(k) = g(x(k),q(k — 1),u(k)) (3)  variabley(k), ...,y(k — n+1), u(k), ..., u(k — m+1).
o ) . The membership functions have to cover the whole op-
Here,x € R" is the continuous state vector, whichgraiing area of the system. What is more, the rules
includes all relevant system outpujs(see ed. (1)), nave to distinguish all possible combinations of the
i.e. measurable continuous states (delayed and napempership functions in the antecedent variable space.
delayed) that influence the state vector in the nexttimgience x is a product of the number of membership
step.u € R™ denotes the input vectog. € Q (Where  fnctions corresponding to each antecedent variable
Q = {1, ..., s}) is the discrete state, which defines th k), y(k—1),....,y(k—n+1),u(k),....u(k—m+1).
switching region. Discrete states are also referred to%oté that the7re éré( fuzzy se,tsAJf ;;15 ';he appurtenant

operating modes. There aseoperating modes of the bershio f ) h f RiI&
hybrid system. The hybrid states are hence described BEMPErship functions are the same for every RHE,
regardless ofl. This means that the fuzzy partitioning

ime- h f in th ;
ggﬁ/ngrirr\]%ftg%.byt e set of statefx(k), q(k)) in the of the state-space is the same, regardless of the current

discrete state (operating mode) of the system. In other
The local behavior of the model described in eq. (2)vords, the normalized degrees of fulfilment are calcu-
depends on the discrete statg:), which defines the lated only from the continuous states of the system.

current functiorf,. .
a On the other hands denotes the number of operating

Eqg. (3) introduces a modification of the strict Witsen-modes of the nonlinear hybrid system, which is also the
hausen hybrid system formulation [9] in the sense thatumber of crisp membership functions characterizing
the discrete statg(k) depends on the input vectatk)  the setsQy. The number of operating modes depends
as well as on the continuous state vect¢k) and the on the partitioning of the state-space and the number of
previous discrete statgk — 1). discrete inputs. For instance, in case we have 2 discrete
The continuous part of the system is generally nonlin'—nﬁ)ut varﬁables r;nd efach variable cdan hgve 4 g!screte
ear, therefore it can be modelled as a Takagi-Sugeng Ues: the number of operating modes (due to discrete
fuzzy model, as shown in subsection 2.2. inputs) is 8. However, if there are some infeasible (un-

wanted or unneeded) input combinations, the number
2.2 Generalization of the Takagi-Sugeno formula- of operating modes of a hybrid fuzzy system is appro-

tion for a nonlinear hybrid system priately reduced.

In order to approximate a nonlinear system, a fuzzy forFhe then-parts (consequences) are functions of the in-
mulation can be employed. Fuzzy models can be rguts of the hybrid fuzzy model. Herg,(k + 1) is an

garded as universal approximators, which can approrutput variable representing the predicted output of the
imate continuous functions to an arbitrary precisionprocess in the next time step (see eq. (1)). When ap-
[15, 16]. plying the Takagi-Sugeno formulation MPC purposes,
(k + 1) can also be regarded as the predicted state

The system dynamics can be formulated as a Taka%’f the systemi(k + 1) (see eq. (2)). There is one

Sugeno fuzzy model. In order to address nonlinear hy- .. ; ‘ . Gd. i
brid systems, we have generalized the model formul)ﬁ-mctlon of inputsf;, defined for each rul®’; j =

; X . ) ... and d = 1,...,s in the hybrid fuzzy model.
tion by incorporating the discrete part of the system dyp) ' ganeral £, can be a nonlinear function. However
namics givenin eq. (3) in the rule base. In this instanc VI '

the rule base of the hybrid fuzzy system is represent(?J )ually an affine functiorfjq is used, as shown in eq.

in eq. (4).

R Fiak), o y(k —n+1),u(k), .., u(k —m+1)) =
=ayjq y(k) + ... + anja y(k —n + 1)+

if (k) is and y(k) is A7 and ... and
a(k) is Qa and y(k) is A7 + b1jq u(k) + o+ bynja w(k —m+1) + 154

y(k—n+1)is A (5)
then g,(k + 1) = fia(y(k), .. y(k —n +1), (4)
u(k), ..., u(k —m+1)) In this case f;; determines the output, while

A1jd;, -y Anjds D1jd, ---, bmja andr;q denote consequent
forj=1,.,Kandd=1,..,s parameters, all corresponding to the rRl&’.



The output of the hybrid fuzzy model in a compact formn eq. (6),2»(k) denotes a regressor in time-stepThe
is given by the following equation. regressor contains all the relevant model inputs that are
needed irf;q. (k) is constructed as shownin eq. (11).

Jp(k+1) = B(k) O (k) ¥ (k) 6) ) _
y(k)

Here,3(k) represents the normalized degrees of fulfill- :
ment for the whole set of fuzzy ruleg = 1, ..., K) y(k _'n+ 1)
in the current time-step, written in the vector form W(k) = u(k) (11)
B(k) = [Bi(k) B2(k) ... Bx(k)]. We assume the
normalized degrees of fulfilment, which are generally :
time-dependent, comply with eq. (7) for every time- u(k—m+1)
stepk. L 1 i

K In general, hybrid fuzzy models can have multiple in-
B(k)I = Zﬁj(k) =1 (7) puts and outputs (also known as multivariable mod-
= els). In the case that the system has several outputs,
the functions of the inputg;; can be regarded as vec-
Here,I is the unity vector. tor functions. In modelling, however, we can concern
) ) ourselves only with single-output hybrid fuzzy models
The normalized degree of fulfillment (~) correspond-  and, accordingly, presumg, to be a scalar function.
ing to a set of rule®R’¢ for everyd = 1,...,s is ob-  |n the case of modelling a multiple-output process, sev-
tained by using &-norm [17]. In our case itis a simple eral models in parallel can be used instead, without any
algebraic product, given in eq. (8). loss of generality. Furthermore, if the system has sev-
eral inputs, the regression vector is simply extended so
as to include all the relevant model inputs.

B:(k) = pag (W(R)) - gy (y(k —n+1)) A similar approach can be taken into consideration
J Zf; poai (y(k)) - oo i (y(k —n+1)) when dealing with h|gher—than-flrst—0rder processes
! " (8) (n > 1). The regression vector the_refore comprises

all the system outputs from past time-step& —

Here,ui s (y(k)) ... 1y (y(k—n-+1)) denotethemem- 1), . y(k — n + 1) needed for predicting, (k + 1).
bership values [18, 19, 17]. However, in the case that it is possible to measure the

L relevant system states, which can substitute the system
In eq. (6),©(k) denotes a matrix with + m + 1 rOWS ¢ 04t5 from the past time-stepét — 1), ..., y(k —
and K columns, which contains the consequent fuzzy; ™ "in "order to predict, (k 4 1), it is generally

fied parameters of the hybrid fuzzy modelin the current, 5.« 5 ; ; :

: ; s ppropriate to employ several (simpler) first-order
time-stepk. As noted in eq. (9)O(k) is actually @ 1q4e|s running in parallel in place of a singith-order
function of the discrete state of the hybrid fuzzy systeny,,qe| for MPC purposes. If such first-order models are
in the current time-steg(k). not feasible, it is still suitable to employ several lower-

thansth-order models instead. To put it another way, it
is generally reasonable to make use of all the available

(ON if q(k) =1 data measured in a single time-step. However, due to
(k) = O(q(k)) = . . unmeasurable system states it is sometimes not possi-
o. i o(k) = s ble to carry out such an approach.
9 e .
®) 3 Identification of a hybrid fuzzy model

The matrice®d, contain the consequent fuzzyfied pa- .
rameters of the hybrid fuzzy model for each operating:1 Fuzzy clustering

mode ¢ = d € {1, ..., s}), individually. We assume the \when identifying a hybrid fuzzy model we often have
set of matrice® to be time-invariant. to face the fact that we do not know the dynamics of

Each matrix®, contains all the consequent fuzzyﬁedthe system well enough to determine the suitable fuzzy
parameters of the hybrid fuzzy model for the set ofetsA’, which make up the premise of the hybrid fuzzy
hybrid fuzzy rules{R’?}, whered is fixed andj; = model. This means that we do not know the suitable
1,..., K. ®, is constructed as shown in eq. (10). membership functions, which is a prerequisite for es-
timating the parameters of the hybrid fuzzy model. In
such a case we can make use of fuzzy clustering algo-
rithms, such afuzzy c-means clustering

el =
a1tg o anid bita o bmia ria Fuzzy clustering is carried out over theput-output
: . : . : space of the hybrid fuzzy modé};, in order to sep-
o : b b ' arate the identification data into sevefatzy clusters
1Kd AnKd 1Kd mKd TKd

(10) Every single piece of identification data, i.e., a point



in the input-output space of the hybrid fuzzy model, ido the other centers of clusters. As for the other clusters,
a member of a particular fuzzy cluster with a certairthe valueu;;, = 0, wherek € {1,2,...,C}\j.
membership degree, which is calculated according t8
the distance of the point from the centers of the partic-
ular fuzzy clusters, which are determined in every ste
of the algorithm.

n the other hand, in the the extreme case that the pa-
meterm is set tom = oo, the membership func-
ions degenerate into completely fuzzy degrees of mem-
bership. The values of the membership functions are
Thefuzzy c-means clusteririgbased on the minimiza- equal across the whole space;; = % for every

tion of a criterion given in eq. (12). je{L,2,...,C}.

Usually, the parameter is set to eithern = 1.25 or

N C
Jur =Y > pillw — el (12)

=1 =1 The fuzzy c-means clusteringlgorithm can be de-

scribed with the following steps.

In eq. (12),m represents a predefined real number that
satisfies the following inequalityl < m < oco. N 1. Set the number of clustelS and the parame-
stands for the number of pieces of identification data, term and establish the initial membership matrix
i.e., the number of points in theput-outputspace of T(0) = [pi]-

the hybrid fuzzy modeD;o; C denotes the number
of clustersu;; represents the value of the membership
function of clusterj for the ith data pointr;. ¢; de-

2. In kth iteration determine the centers of the clus-
tersc; for j =1, ..., C according toY (k).

notes the center of cluster | - || is the norm, which 3 calculate the new membership mafixk + 1).
defines the degree of dissimilarity between the center _
of the cluster; and the data point;. 4. 1If |T(k+ 1) — T(k)|] < e stop the algorithm,

. . . _ otherwise continue from step 2.
Usually, the Euclidean norm is used, as given in eq. P

(13). 3.2 Projections of the fuzzy clusters into the input

space of the hybrid fuzzy model

=T . 13 .
Il v (13) The centers of the clusters (and the corresponding

embership functions) that are returned by the cluster-
g algorithm, are defined in thiaput-outputspace of
e hybrid fuzzy modeD;o. The membership func-
tions that are defined in such a manner can be directly
used for parameter estimation of a hybrid fuzzy model.
However, such a definition is not usable for predicting
1 the bahaviour of the system in model predictive control
= —, strategies. Namely, it is not possible to determine the
Zc ( llzi—cj| ) m—1 normalized degrees of fulfilment for a particular fuzzy
k=1 \ llzi—cxll clusters;(k), wherej € {1,2,...,C} —see eq. (8) —
c because the values of the membership functions depend
so that for everyi € {1, ..., N} holds Zuij = 1. on the distances to the centers of the particular fuzzy
j=1 clusters in thanput-outputspace of the hybrid fuzzy
(14) modelD;o —see eq. (14). When using the hybrid fuzzy
model for prediction, we are not able to determine these
~ distances, because we are primarily dealing with a vec-
D imi M Ti (15) tor in theinput space of the hybrid fuzzy model;.
! Zij\il o The membership functions are established by means of
fuzzy clustering in thénput-outputspace of the hybrid
In egs. (14) and (15), denotes the index of a partic- fuzzy modelD; o, therefore, we have to find a way to
ular point in the identification datg; andk stand for appropriately map the information on the membership
the index of a particular fuzzy cluster and its center, refunctions from thenput-outputspaceD; to theinput
spectively. The value of the parameterdefines the space of the hybrid fuzzy modél;, in order to make
fuzzynessr. crispnesof the distribution of the fuzzy the model usable for predicting the behavior of the sys-
membership functions in space. tem.

Fuzzy clustering is conducted iteratively: in every steﬂin
of the algorithm the values of the membership function
wi; and the centers of the clustersare calculated, as
shown in egs. (14) and (15), respectively.

Hij

In the extreme case that the parameteris set to As shown in eq. (14), the values of the membership
m = 1, the membership functions degenerate into crisfunctions ;;; depend on the distances to the centers
degrees of membership. The range of the membesf particular fuzzy clusters in theput-outputspace
ship functions is therefore limited to two values only:of the hybrid fuzzy modeD;o. Hence, we are able
wi; € {0,1}. From eq. (14) we can see that the valug¢o determine the appropriate values of the membership
wi; = 1if the norm||z; — ¢;|| for theith identification  functionsy,; by knowing these distances. The prob-
point and the cluster centgiis the smallest comparing lem is thus reduced to projecting the information on the



distances to the centers of the particular fuzzy clustefszzy cluster;. If the center of the fuzzy clustey lies
from theinput-outputspaceD o into theinputspace of on the hyperplane (17), the poisit coincides with the
the hybrid fuzzy modeD;. center of the fuzzy clustey;. Again, the dimensions of
e vectors, s; andn; are defined by the dimension of

Let us assume that the norm is defined as in eq. uz{ﬂeinput—outpwspace of the hybrid fuzzy mod®l;o.

The sets of points in thimput-outputspace of the hy-
brid fuzzy modelD;, that are equidistant from a cho- The vectorr, which is defined in thenput-outputspace
sen point — in our case from the center of a particulanf the hybrid fuzzy modeD; o, can be divided into the
clusterc; — can be thus represented geometrically by aomponents:;, which are defined in thenput space
hypersphere with the center in the chosen point in thef the hybrid fuzzy modeD;, and the componenty,
input-outputspace of the hybrid fuzzy mod®l;o. The which is defined in the theutputspace of the hybrid
radius of the hypersphere defines the distance from tliezzy modelD, as shown in eq. (18).

chosen point. The dimension of the hypersphere is de-

fined by the dimension of thieput-outputspaceD;o, "
i.e., by the number of inputs and outputs of the hybrid T = { xl } (18)
fuzzy model. o

The mathematical definition of a hypersphere in th&hen using the hybrid fuzzy model for predicting the
input-outputspace of the hybrid fuzzy mod@;o is  system behavior we only deal with;, and not with

givenin eq. (16). xo. However, below we show that this is a manageable
problem.
T ) ) If we assume thato is a parameter, then the param-
[z =] [z —¢]l =7 =z — gl (16) eterized equations (16) and (17) define a contour in
wherej € {1,2,...,C}. theinput-outputspace of the hybrid fuzzy modél;o.

The contour represents the intersection of a hypersphere
(16) and a hyperplane (17). When treating the existence

In eq. (16), vectorz denotes a point in thinput- of the contour, we have to deal with three alternatives.

outputspace of the hybrid fuzzy modé};o lying on
the hypersphere with the centerdn. The radius of
the hypersphere is calculated using the Euclidean norme If 0 < r; < r;min, then the contour does not
r; = ||lx — ¢;||. The dimensions of the vectossand exist.

¢; are defined by the dimension of tlieput-output
space of the hybrid fuzzy mod@él;o. Index;j, where
j€{1,2,...,C}, stands for the index of the particular
fuzzy cluster we are dealing with. e If 7jmin < 1; < 00, then the contour is a hyper-

As described in section 2.2, there is one functjgn circle.

defined for every single rul®7¢ in the hybrid fuzzy _ N

model. If we assume the functighy is affine, as shown In the aforementioned conditions; .., denotes the
in eq. (5), we can regard it as a representation of afinimal value of the parametey;, which assures the
affine submodel in the case that= 1 andg;, = 0, for ~ €xistence of the intersecting hypercircle.

k # j, andg = d. Obviously, we deal primarily with the third alterna-

The sets of points in thimput-outputspace of the hy- tive, i.e., the case that the contour is a hypercircle. A
brid fuzzy modelD;o that are defined by the affine hypercircle defined in such a manner represents the
function f;4 can be represented geometrically by a hyPoints in theinput-outputspace of the hybrid fuzzy

modelD;o. between vectors equals the radius of the hypersphere

(16) ||z — ¢;|| = r;, and at the same time lie on the

The mathematical definition of a hyperplane in theyyperplane'(17). Hence, the eq. (19) holds.
input-outputspace of the hybrid fuzzy mod&;o is

givenin eq. (17).

o If r; =7 min, then the contour degenerates into a
point.

0< Tj,min < r; <00 (19)

In case that the center of the hypersphere ¢}@ips on
(17) the hyperplane (17), then ,,,;, = 0.

The hypercircle defined in such a manner can be pro-
jected into theinput space of the hybrid fuzzy model
D;. Therefore, we can obtain a hyperellipse, which de-
fines the points in thinput space of the hybrid fuzzy
modelD;, which can be assigned the value

[z — sj]T -nj =0,
wherej € {1,2,...,C}.

In eq. (17), vector: denotes a point in thiaput-output
space of the hybrid fuzzy mod#};, lying on the hy-
perplane, which is defined by an arbitrary paintying

on the hyperplane and the normal veotgr For clarity
reasons, it is possible to assume — without losing genefFhe mathematical definition of a hyperellipse in the
ality — thats; is the point lying on the hyperplane (17), put space of the hybrid fuzzy mod#l; is given in eq.
which is the closest to the corresponding center of th@0).



In this case the hybrid fuzzy model output (6) can be
r ) described as in the following equation.
[xr — 51" Ap; [21r = s51] =773,

wherej € {1,2,...,C}and0 < rj i < 71j < (?2)0) Gp(k +1) = é(k)T (k) (24)
3.4 Preparation of the data for estimation of the

In eq. (20), vector:; denotes a point in th@putspace parameters of the hybrid fuzzy model

of the hybrid fuzzy modeDy; s; ; stands for the center The hybrid fuzzy model parametets;q, ... ,anjd,

of the hyperellipse in thenputspace of the hybrid fuzzy b4, ... ,bmjqs andr;q have to be estimated for each
modelD;, which is obtained by projecting the center ofrule R’¢; j = 1,..,K and d = 1,...,s. To put it
the hypersphere; from theinput-outputspace of the another way, all the matrice®, have to be established
hybrid fuzzy modeD;¢ into theinputspace of the hy- (see eq. (10)).

brid fuzzy modelD;; the square matrixl,, geometri-

cally defines the orientation and lengths of the semiaxed€ regression matri¥ ;, for the ruleR/¢ in eq. (25)
of the hyperellipse. Is obtained by using the whole set of input data for the

hybrid fuzzy system. Here, indei runs fromk; to
The value of the parametey defines different hyperel- £p;;, where P;; denotes the number of input-output
lipses in thenput space of the hybrid fuzzy mod@&l;.  data pairs corresponding to the rité.
It goes without saying that eq. (19) must hold. ] .
. ] However, only data from time-stepghat comply with
In the described manner, we can thus defiieinctions  the conditions in egs. (26) and (27) are actually used
that are defined in t.hmput space of the hybrld fuzzy for Constructing the regression matp]'xjd_ Here,s de-
modelD; . The functions assign a valug(z;) to every notes a small positive number. Since the model param-
pointz; (for everyj € {1,2,...,C}) as shownin eq. eters are obtained by matrix inversion (described later
(21). in this section), compliance with eq. (27) is essential
for obtaining suitably conditioned matrices.

T D — [Tj,mina OO), ﬁj (kl) wT(kl)
(ST e (:C[), (21) lIljd = . (25)

wherej € {1,2,...,C}. 8;(kpja) 'wT(kde)

If we know the functionsr;(z;) for every j € q(k)=d (26)

{1,2,...,C}, we can derive the membership functions

that correspond to the results of the clustering algo-

rithm and that are defined in thaput space of the Bj(k) > 6 (27)

hybrid fuzzy modelD;. The membership functions , . i

assign a valugu;(z;) to every pointz; (for every The output variable of thg systemis included in the

je{1,2,...,C}) as shownin eq. (22). output data vectol’;4, which corresponds to the rule
R74, as written in eq. (28). Again, only data from
time-steps(k + 1) that comply with the conditions in

1 egs. (26) and (27) are actually used for constructing the
Hj=——"—">35, output data vectoyq.
S (2)7 (22)
wherej € {1,2,...,C}. Bi(k1) y(ky +1)
Yjq = : (28)
The membership functions defined in eq. (22) can be Bj(k1) y(kpja +1)

directly implemented in the hybrid fuzzy model for pre- Lo )
dicting the system behavior — see eq. (8) - i.e., for detefN€ output contributiop; (k+1) corresponding to the
mining the membership values corresponding to everyle R7¢ is written in eq. (29).

particular clustep;(k), wherej € {1,2,...,C} —see
eqg. (8).

3.3 Global linear model

The hybrid fuzzy system with a common consequencdere, vector®,, represents a column in the matrix
structure (described in subsection 2.2) can be express®d. Which contains the parameters of the hybrid fuzzy
as a global linear model. The input-dependent param@10del corresponding to the ruk’* as denoted in eq.
ters given in eq. (23) can be derived from eq. (10).  (30).

B (k1) g (k +1) = Oy (B (k1) (k) (29)

é(kﬁ) — @(kﬁ) I@(k,)T (23) (-Dfd = [aljd .. Qnjd bljd bmjd Tjd] (30)



3.5 Estimation of the parameters of the hybrid |rc T
fuzzy model by means of a modified least- , To
squares method ‘ k@

According to egs. (25), (28) and (29), the hybrid fuzzy
model parameters for the ruR’? can be obtained us- > <

ing the least-squares identification method as written in ku @ -k &
eq. (31) 3] | m,c, T |
S, A
©ju = (], %,0) "' ], Yjq (31) -
By calculating the hybrid fuzzy model parameters for Fig. 1 Scheme of the batch reactor

the whole set of ruleR’?; j = 1,..., K andd =
1,..., s, the hybrid fuzzy model is finally established.

The parameters of the hybrid fuzzy model are estimate
on the basis of measured input-output data using th
least-squares identification method. The approach & order to identify the hybrid fuzzy model the batch
based on decomposition of the data mafiinto /- s reactor we need appropriate input-output signals that
submatricesP ;4. Hence, the parameters for each rulenable the estimation of the dynamics of the system.
R/ (j =1,.., K andd = 1, ..., s) are calculated sep- The input signals have been generated using a pseudo-
arately. Due to better conditioning of the submatricesandom generator, whereas the output signals are rep-
¥4, compared to the conditioning of the whole dataesented by the recorded responses of the system (for
matrix ¥, this approach leads to a better estimate adetailed information see [21]).

the hybrid fuzzy parameters, or to put it in another way.
the variances of the estimated parameters are small
compared to the classic approach given in the literatu
[18, 19, 17, 20].

1 Modelling and identification

Ipe model of the batch reactor is derived in several

_ _ ] o o First, we split the multivariable system into two
The described instantaneous linearization generates the simpler subsystems with multiple inputs and a sin-

parameters of the global linear model (see eq. (23)), gle output (MISO).

which depends on the antecedents of the hybrid fuzzy

systemy(k), y(k),...,y(k—n+1), u(k),...,u(k—m+ e Taking into account the influence of the outputs on
1). Inthe case of MPC, the global linear parameters can  both subsystems we establish the structure of the
be used directly to predict the behavior of the system.  submodels for each subsystem.

In this case, the controller has to adapt to the dynamic ) ] )
changes online. o We identify each subsystem using the method de-
scribed in section 3.

4 Batch reactor _ _
According to heat flows that occur in the batch reac-

The presented identification method for systems th&@r we can split the system into two subsystems, which
can be formulated as hybrid fuzzy models has bedprimarily deal with:

tested on a simulation example of a real batch reactor
[13] that is situated in a pharmaceutical company and is
used in the production of medicines. The goal is to con-
trol the temperature of the ingredients stirred in the re- o the temperature in the water jacket of the batch re-
actor core so that they synthesize into the final product.  actor7),.

In order to achieve this, the temperature has to follow

the reference trajectory given in the recipe as accurately i

as possible. In addition, the temperature in the reactor8 this manner we take advantage of the prior knowl-
water jacket should be constrained between a minimuffige of the structure of the system: we conduct a sort of

and maximum value. A scheme of the batch reactor 9rey-boxidentificationwhich presents a compromise
shown in fig. 1. between dlack-box identificatiomnd pureheoretical

modelling

o the temperature in the core of the batch rea€tor

The control demands can be achieved using a modgf,, temperature in the core of the batch reaGtate-

predictive control strategy. quever, in order to imple, ends only on the heat conduction between the core and
ment such an approach, a suitable model of the syst water-jacket of the batch reactor

is needed. Therefore, we develop a hybrid fuzzy model
of the batch reactor using the proposed identificatiod/e are therefore dealing with a MISO model as shown
approach. in eq. (32). The regressor consists of the temperature



in the water jackef,, (k) and in the corél’(k) of the The parameters of the model are given in egs. (38) and

batch reactor in the actual time-step (39).
T(k + 1> - f(Tw(k% T(k)) (32) 0.6312 0.9257 0.9361 0.9404 0.9277
e} _ 0.0400 0.0513 0.0384 0.0490 0.0515
We assume that the heat flow is proportional to differ- ! — | 1.7115 12,5240 6.9758 19.3915 16.8357
. . 22.4874 0.7210 1.0316 0.1955 0.5233
ence between the temperature in the water ja€két) (38)
and in the cor@’(k) of the batch reactor. Hence, we can
derive a linear 1st-order model as shown in eq. (33).
~ T T ®w2 =
T(k + 1) =0 [Tw(k) T(k)] (33) 0.9059 0.9337 0.9462 0.6279 0.6312
_ 0.0630 0.0468 0.0359 0.0404 0.0400
. . . S —10.8609 —4.5854 —1.5090 —15.3616 —14.9129
After conducting a least-squares estimation we obtain [ 0.8869 0.4228  0.3163  19.3905  18.9084 1
the following parameters. (39)
6 = [0.0033 0.9967]" (34) 4.2 \Validation

) , We have validated the obtained hybrid fuzzy model by
The temperature in the water jacket of the batch react@bmparing its responses to the responses of the orig-
T, depends on the heat flow between the water jackg{a| patch reactor model. The input signals have been
and the core and betwen the water jacket and the S\anerated using a pseudorandom generator (for detailed
roundings. In addition, we have to take into account thiyformation see [21]). We have recorded both measur-
heat flow due to inflow and outflow of the water in theape outputs, i.e., the temperature in the cBrand the

jacket of the batch reactor. temperature in the water jacket of the batch rea&tar

We are therefore dealing with a MISO model as showgigyre 2 shows a closeup of the trajectory of temper-
in eq. (35). The regressor consists of the temperatutgre in the water jacket of the batch reactor ob-

in the water jacket’, (k) and in the corel’(k) of the tﬁined by a simulation using the hybrid fuzzy model of
batch reactor and the input signals, i.e., the position Qe hatch reactor. The dotted line represents the original

the mixing valvek), (k) and the hotky (k) and cold-  regponse of the batch reactor to the input signals.
water valvesic (k) in the actual time-step.

70

(35) 60

Since the dynamics concerning the temperature the v
ter jacket of the batch react®y, (k) involve both hybrid
and nonlinear properties, the submodel will be formi*=,
lated as a hybrid fuzzy model. T

50

A general modelling and identification procedureisir |
troduced in sections 2 in 3. By following the aforemer
tioned procedures we obtain the following hybrid fuzz
model of the batch reactor. We defite= 5 clusters

for each operating mode. ‘ ‘ ‘ ‘

20

3 31 3.2 33 3.4 3.‘5 3.6 3.7 3.8 3.9 4
The output of the model in a compact form is given i.. ths] % 10°
eg. (36).

Fig. 2 The response of the hybrid fuzzy model to the
validation input signals (solid line) and the original re-
sponse of the batch reactor (dotted line).

T (k + 1) = B(k, )OL(q) [T (k) T(k) kar(k) 1]"

36
_ ) ) (36) For validation purposes, we can calculate the following
The discrete dynamics (operating mode) of the modelarameters that reflect the identification quality.
are defined in eq. (37).

e The average squared discrepancy of the tempera-
ture in the water jacket of the batch reactqy.

=1
(k.) =0 JTw =1.0474 (40)



e The average squared discrepancy of the temperaf9]
ture in the core of the batch reactbr

Jr = 0.5574 (41) [10]

5 Conclusion

The complex hybrid and nonlinear nature of many prof1]
cesses that are met in practice causes problems with
both structure modelling and parameter identification;
therefore, obtaining a model that is suitable for MPC

is often a difficult task. The hybrid fuzzy model rep-
resents a convenient framework for modelling complefl2]
systems for control purposes in practice. However, it

is often difficult to identify a complex nonlinear hybrid
system and formulate it as a hybrid fuzzy model.

The identification method presented in this paper strive?:g]
to overcome this obstacle by using a fuzzy clusterin
algorithm for identification purposes and project the re-
sulting clusters defined in thieput-outputspace of the
hybrid fuzzy modelD; into theinputspace of the hy-
brid fuzzy modelD;. In this manner, we can obtain a
hybrid fuzzy model suitable for model predictive con-
trol purposes.

(14]

We verified the identification approach on a hybrid non-
linear batch reactor example. The result suggest thfits]
the batch reactor can be efficiently identified and for-
mulated as a hybrid fuzzy model, which can eventually
be used in a model predictive control algorithm. [16]
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