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Abstract

The complex hybrid and nonlinear nature of many processes that are met in prac-
tice causes problems with both structure modelling and parameter identification;
therefore, obtaining a model that is suitable for MPC is often a difficult task. In
this paper we focus on using the hybrid fuzzy model formulation. The framework
is suitable for modelling nonlinear hybrid systems and can be implemented in
model predictive control design. The basic idea of this paper is to present an iden-
tification method for a hybrid fuzzy model based on a fuzzy clustering algorithm.
In the paper, we first introduce the hybrid fuzzy model. We present the hierar-
chical structure and the generalization of the Takagi-Sugeno formulation for the
nonlinear hybrid system and give the output of the hybrid fuzzy model in a com-
pact form. Next, we tackle the identification method. We treat the fuzzy clustering
algorithm, deal with the projections of the fuzzy clusters into the input space of
the hybrid fuzzy model and explain the estimation of the parameters of the hy-
brid fuzzy model by means of a modified least-squares method.Furthermore, we
verify the usability of the proposed identification approach on a hybrid nonlinear
batch reactor example. The result suggest that the batch reactor can be efficiently
identified and thus formulated as a hybrid fuzzy model, whichcan eventually be
used for model predictive control purposes.
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1 Introduction

Dynamic systems that involve continuous and discrete
states are calledhybrid systems. Most industrial pro-
cesses contain both continuous and discrete compo-
nents, for instance, discrete valves, on/off switches, log-
ical overrides, etc. The continuous dynamics are of-
ten inseparably interlaced with the discrete dynamics;
therefore, a special approach to modelling and control
is required. At first this topic was not treated systemati-
cally [1]. In recent years, however, hybrid systems have
received a great deal of attention from the computer sci-
ence and control community.

Model predictive control(MPC) presents one of the
advanced approaches that is widely used in industrial
practice. At first, MPC was only employed in the petro-
chemical industry, but it has been constantly gaining
a reputation of a generally usable approach to a wide
spectrum of control problems. Lately, MPC has not
been limited only to slow processes, where there is
plenty of time for calculations between successive time-
steps, but it has also been gaining ground in the field of
fast processes. That said, when dealing with control
problems involving complex dynamics, computational
complexity still remains the main issue. MPC is based
on forecasting the future behavior of a system at each
sampling instant using the process model. The com-
plex hybrid and nonlinear nature of many processes that
are met in practice causes problems with both structure
modelling and parameter identification; therefore, ob-
taining a model that is suitable for MPC is often a dif-
ficult task. Hence, the need for special methods and
formulations when dealing with hybrid systems is very
clear.

MPC methods for hybrid systems employ several
model formulations. Often the system is described as
mixed logical dynamical(MLD) [2]. A lot of interest
has also been devoted topiecewise affine(PWA) for-
mulation [3], which has been proven to be equivalent
to many classes of hybrid systems [4]. What is more,
MLD models can be transformed to the PWA form. The
optimal control problem for discrete-time PWA systems
can be converted to a mixed-integer optimization prob-
lem and solved online [5]. On the other hand, in [6]
the authors tackle the optimal control problem for PWA
systems by solving a number of multi-parametric pro-
grams offline. In such manner, it is possible to obtain a
solution in the form of a PWA state feedback law that
can be efficiently implemented online.

The aforementioned methods mainly consider systems
with continuous inputs, despite the fact that solu-
tions based on(multiparametric) mixed integer lin-
ear/quadratic programming(mp-MIQP/MILP) can be
applied to systems with discrete inputs as well. How-
ever, the computational complexity increases drasti-
cally with the number of discrete states, and so these
methods can become computationally too demanding.
An algorithm for the efficient MPC of hybrid systems
with discrete inputs only is proposed in [7].

Most of the previous work related to the MPC of hy-

brid systems is based on (piecewise) linear and equiva-
lent models. However, such approaches can prove un-
successful when dealing with distinctive nonlinearities.
Since a PWA formulation can only represent piecewise
affine systems, further segmentation is required in or-
der to suitably approximate the nonlinearity. The new
segments introduce new discrete auxiliary variables in
the MILP/MIQP optimization program, which causes a
higher complexity, often resulting in programs that are
computationally too demanding.

A nonlinear modelling approach for MPC purposes is
presented in [8]. The authors introduce an analytical
predictive-control-law for fuzzy systems. The mod-
elling and identification methodology is usable for plain
nonlinear systems, but not for the structurally more
complex class of hybrid systems. A hierarchical iden-
tification of a fuzzy switched system [9] is introduced
in [10]. Furthermore, two structure-selecting methods
for nonlinear models with mixed discrete and continu-
ous inputs are presented in [11]. In [12] a fuzzy control
method is implemented in the low control-level for a
class of hybrid systems based on hybrid automata.

In this paper we focus on using the hybrid fuzzy model
formulation presented in [13]. The framework is suit-
able for modelling nonlinear hybrid systems and can be
implemented in model predictive control design. The
basic idea of this paper is to present an identification
method for a hybrid fuzzy model based on a fuzzy clus-
tering algorithm.

The outline of the paper is as follows. Section 2 in-
troduces the hybrid fuzzy model. Next, in section 3
the identification method is explained. We verify the
usability of the proposed identification approach on a
nonlinear hybrid batch reactor example in section 4. Fi-
nally, we give some concluding remarks.

2 Modelling of a hybrid fuzzy model
Dynamic systems are usually modelled by feeding back
delayed input and output signals. In the discrete-time
domain a common nonlinear model structure is the
NARX (Nonlinear AutoRegressive with eXogenous in-
puts) model [14], which gives the mapping between the
past input-output data and the predicted output.

ŷp(k + 1) = F (y(k), y(k − 1), ...,

y(k − n+ 1), u(k), u(k − 1), ..., u(k −m+ 1))
(1)

Here,y(k), y(k− 1), ..., y(k− n+ 1) andu(k), u(k−
1), ..., u(k −m+ 1) denote the delayed process output
and input signals, respectively. Hence, the model of the
system is represented by the (nonlinear) functionF .

2.1 Hybrid system hierarchy

As already mentioned, many processes met in prac-
tice demonstrate a hybrid nature, which means that the
continuous dynamics are interlaced with the discrete
dynamics. A special class of such systems is called
switched systems, where the continuous states remain



continuous even when the discrete states are changed,
i.e. no jumps of the continuous state vector are allowed.
In this paper we deal with hybrid systems represented
by a hierarchy of discrete and continuous subsystems
where the discrete part is atop the hierarchy. A discrete-
time formulation is described in eqs. (2) and (3).

x(k + 1) = fq(x(k),u(k)) (2)

q(k) = g(x(k), q(k − 1),u(k)) (3)

Here, x ∈ Rn is the continuous state vector, which
includes all relevant system outputsy (see eq. (1)),
i.e. measurable continuous states (delayed and non-
delayed) that influence the state vector in the next time-
step.u ∈ Rm denotes the input vector.q ∈ Q (where
Q = {1, ..., s}) is the discrete state, which defines the
switching region. Discrete states are also referred to as
operating modes. There ares operating modes of the
hybrid system. The hybrid states are hence described at
any time-stepk by the set of states(x(k), q(k)) in the
domainRn ×Q.

The local behavior of the model described in eq. (2)
depends on the discrete stateq(k), which defines the
current functionfq.

Eq. (3) introduces a modification of the strict Witsen-
hausen hybrid system formulation [9] in the sense that
the discrete stateq(k) depends on the input vectoru(k)
as well as on the continuous state vectorx(k) and the
previous discrete stateq(k − 1).

The continuous part of the system is generally nonlin-
ear, therefore it can be modelled as a Takagi-Sugeno
fuzzy model, as shown in subsection 2.2.

2.2 Generalization of the Takagi-Sugeno formula-
tion for a nonlinear hybrid system

In order to approximate a nonlinear system, a fuzzy for-
mulation can be employed. Fuzzy models can be re-
garded as universal approximators, which can approx-
imate continuous functions to an arbitrary precision
[15, 16].

The system dynamics can be formulated as a Takagi-
Sugeno fuzzy model. In order to address nonlinear hy-
brid systems, we have generalized the model formula-
tion by incorporating the discrete part of the system dy-
namics given in eq. (3) in the rule base. In this instance,
the rule base of the hybrid fuzzy system is represented
in eq. (4).

R
jd :

if q(k) is Qd and y(k) is Aj
1
and ... and

y(k − n+ 1) is Aj
n

then ŷp(k + 1) = fjd(y(k), ..., y(k − n+ 1),

u(k), ..., u(k −m+ 1))

for j = 1, ...,K and d = 1, ..., s

(4)

The if -parts (antecedents) of the rules describe hybrid
fuzzy regions in the space of the input variables of the
hybrid fuzzy model. Here,q(k) ∈ {1, ..., s} stands
for the discrete state of the nonlinear hybrid system,
i.e., its operating mode.Qd andAj

i represent (fuzzy)
sets characterized by their crisp and fuzzy membership
functions, respectively.

The number of relevant rules in the hybrid fuzzy model
is K · s. Generally speaking,K depends on the num-
ber of fuzzy membership functions for each antecedent
variabley(k), ..., y(k−n+1), u(k), ..., u(k−m+1).
The membership functions have to cover the whole op-
erating area of the system. What is more, the rules
have to distinguish all possible combinations of the
membership functions in the antecedent variable space.
Hence,K is a product of the number of membership
functions corresponding to each antecedent variable
y(k), y(k−1), ..., y(k−n+1), u(k), ..., u(k−m+1).
Note that there areK fuzzy setsAj

i as the appurtenant
membership functions are the same for every ruleR

jd,
regardless ofd. This means that the fuzzy partitioning
of the state-space is the same, regardless of the current
discrete state (operating mode) of the system. In other
words, the normalized degrees of fulfillment are calcu-
lated only from the continuous states of the system.

On the other hand,s denotes the number of operating
modes of the nonlinear hybrid system, which is also the
number of crisp membership functions characterizing
the setsQd. The number of operating modes depends
on the partitioning of the state-space and the number of
discrete inputs. For instance, in case we have 2 discrete
input variables and each variable can have 4 discrete
values, the number of operating modes (due to discrete
inputs) is 8. However, if there are some infeasible (un-
wanted or unneeded) input combinations, the number
of operating modes of a hybrid fuzzy system is appro-
priately reduced.

The then-parts (consequences) are functions of the in-
puts of the hybrid fuzzy model. Here,ŷp(k + 1) is an
output variable representing the predicted output of the
process in the next time step (see eq. (1)). When ap-
plying the Takagi-Sugeno formulation MPC purposes,
ŷp(k + 1) can also be regarded as the predicted state
of the systemx̂(k + 1) (see eq. (2)). There is one
function of inputsfjd defined for each ruleRjd; j =
1, ...,K and d = 1, ..., s in the hybrid fuzzy model.
In general,fjd can be a nonlinear function. However,
usually an affine functionfjd is used, as shown in eq.
(5).

fjd(y(k), ..., y(k − n+ 1), u(k), ..., u(k −m+ 1)) =

=a1jd y(k) + ...+ anjd y(k − n+ 1)+

+ b1jd u(k) + ...+ bmjd u(k −m+ 1) + rjd
(5)

In this case fjd determines the output, while
a1jd, ..., anjd, b1jd, ..., bmjd andrjd denote consequent
parameters, all corresponding to the ruleR

jd.



The output of the hybrid fuzzy model in a compact form
is given by the following equation.

ŷp(k + 1) = β(k) ΘT (k) ψ(k) (6)

Here,β(k) represents the normalized degrees of fulfill-
ment for the whole set of fuzzy rules (j = 1, ...,K)
in the current time-stepk, written in the vector form
β(k) = [β1(k) β2(k) ... βK(k)]. We assume the
normalized degrees of fulfillment, which are generally
time-dependent, comply with eq. (7) for every time-
stepk.

β(k)I =

K
∑

j=1

βj(k) = 1 (7)

Here,I is the unity vector.

The normalized degree of fulfillmentβj(k) correspond-
ing to a set of rulesRjd for everyd = 1, ..., s is ob-
tained by using aT -norm [17]. In our case it is a simple
algebraic product, given in eq. (8).

βj(k) =
µ
A

j
1

(y(k)) · ... · µ
A

j
n
(y(k − n+ 1))

∑K

i=1
µAi

1

(y(k)) · ... · µAi
n
(y(k − n+ 1))

(8)

Here,µ
A

j

1

(y(k)) ... µ
A

j
n
(y(k−n+1)) denote the mem-

bership values [18, 19, 17].

In eq. (6),Θ(k) denotes a matrix withn+m+ 1 rows
andK columns, which contains the consequent fuzzy-
fied parameters of the hybrid fuzzy model in the current
time-stepk. As noted in eq. (9),Θ(k) is actually a
function of the discrete state of the hybrid fuzzy system
in the current time-stepq(k).

Θ(k) = Θ(q(k)) =











Θ1 if q(k) = 1
...

...
Θs if q(k) = s











(9)

The matricesΘd contain the consequent fuzzyfied pa-
rameters of the hybrid fuzzy model for each operating
mode (q = d ∈ {1, ..., s}), individually. We assume the
set of matricesΘd to be time-invariant.

Each matrixΘd contains all the consequent fuzzyfied
parameters of the hybrid fuzzy model for the set of
hybrid fuzzy rules{Rjd}, whered is fixed andj =
1, ...,K. Θd is constructed as shown in eq. (10).

Θ
T
d =

[

a11d · · · an1d b11d · · · bm1d r1d

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
a1Kd · · · anKd b1Kd · · · bmKd rKd

]

(10)

In eq. (6),ψ(k) denotes a regressor in time-stepk. The
regressor contains all the relevant model inputs that are
needed infjd. ψ(k) is constructed as shown in eq. (11).

ψ(k) =























y(k)
...

y(k − n+ 1)
u(k)

...
u(k −m+ 1)

1























(11)

In general, hybrid fuzzy models can have multiple in-
puts and outputs (also known as multivariable mod-
els). In the case that the system has several outputs,
the functions of the inputsfjd can be regarded as vec-
tor functions. In modelling, however, we can concern
ourselves only with single-output hybrid fuzzy models
and, accordingly, presumefjd to be a scalar function.
In the case of modelling a multiple-output process, sev-
eral models in parallel can be used instead, without any
loss of generality. Furthermore, if the system has sev-
eral inputs, the regression vector is simply extended so
as to include all the relevant model inputs.

A similar approach can be taken into consideration
when dealing with higher-than-first-order processes
(n > 1). The regression vector therefore comprises
all the system outputs from past time-stepsy(k −
1), ..., y(k − n+ 1) needed for predictinĝyp(k + 1).
However, in the case that it is possible to measure the
relevant system states, which can substitute the system
outputs from the past time-stepsy(k − 1), ..., y(k −
n + 1) in order to predict̂yp(k + 1), it is generally
more appropriate to employ several (simpler) first-order
models running in parallel in place of a singlenth-order
model for MPC purposes. If such first-order models are
not feasible, it is still suitable to employ several lower-
than-nth-order models instead. To put it another way, it
is generally reasonable to make use of all the available
data measured in a single time-step. However, due to
unmeasurable system states it is sometimes not possi-
ble to carry out such an approach.

3 Identification of a hybrid fuzzy model
3.1 Fuzzy clustering

When identifying a hybrid fuzzy model we often have
to face the fact that we do not know the dynamics of
the system well enough to determine the suitable fuzzy
setsAj

i , which make up the premise of the hybrid fuzzy
model. This means that we do not know the suitable
membership functions, which is a prerequisite for es-
timating the parameters of the hybrid fuzzy model. In
such a case we can make use of fuzzy clustering algo-
rithms, such asfuzzy c-means clustering.

Fuzzy clustering is carried out over theinput-output
space of the hybrid fuzzy modelDIO in order to sep-
arate the identification data into severalfuzzy clusters.
Every single piece of identification data, i.e., a point



in the input-output space of the hybrid fuzzy model, is
a member of a particular fuzzy cluster with a certain
membership degree, which is calculated according to
the distance of the point from the centers of the partic-
ular fuzzy clusters, which are determined in every step
of the algorithm.

Thefuzzy c-means clusteringis based on the minimiza-
tion of a criterion given in eq. (12).

JMR =

N
∑

i=1

C
∑

j=1

µm
ij ‖xi − cj‖2 (12)

In eq. (12),m represents a predefined real number that
satisfies the following inequality:1 ≤ m < ∞. N
stands for the number of pieces of identification data,
i.e., the number of points in theinput-outputspace of
the hybrid fuzzy modelDIO; C denotes the number
of clusters,µij represents the value of the membership
function of clusterj for the ith data pointxi. cj de-
notes the center of clusterj; ‖ · ‖ is the norm, which
defines the degree of dissimilarity between the center
of the clustercj and the data pointxi.

Usually, the Euclidean norm is used, as given in eq.
(13).

‖x‖ =
√
xT · x (13)

Fuzzy clustering is conducted iteratively: in every step
of the algorithm the values of the membership functions
µij and the centers of the clusterscj are calculated, as
shown in eqs. (14) and (15), respectively.

µij =
1

∑C

k=1

(

‖xi−cj‖
‖xi−ck‖

)
2

m−1

,

so that for everyi ∈ {1, . . . , N} holds
C
∑

j=1

µij = 1.

(14)

cj =

∑N
i=1

µm
ij · xi

∑N

i=1
µm
ij

(15)

In eqs. (14) and (15),i denotes the index of a partic-
ular point in the identification data;j andk stand for
the index of a particular fuzzy cluster and its center, re-
spectively. The value of the parameterm defines the
fuzzynessor. crispnessof the distribution of the fuzzy
membership functions in space.

In the extreme case that the parameterm is set to
m = 1, the membership functions degenerate into crisp
degrees of membership. The range of the member-
ship functions is therefore limited to two values only:
µij ∈ {0, 1}. From eq. (14) we can see that the value
µij = 1 if the norm‖xi − cj‖ for theith identification
point and the cluster centerj is the smallest comparing

to the other centers of clusters. As for the other clusters,
the valueµik = 0, wherek ∈ {1, 2, . . . , C}\j.
On the other hand, in the the extreme case that the pa-
rameterm is set tom = ∞, the membership func-
tions degenerate into completely fuzzy degrees of mem-
bership. The values of the membership functions are
equal across the whole space:µij = 1

C
for every

j ∈ {1, 2, . . . , C}.

Usually, the parameterm is set to eitherm = 1.25 or
m = 2.

The fuzzy c-means clusteringalgorithm can be de-
scribed with the following steps.

1. Set the number of clustersC and the parame-
term and establish the initial membership matrix
Υ(0) = [µij ].

2. In kth iteration determine the centers of the clus-
terscj for j = 1, . . . , C according toΥ(k).

3. Calculate the new membership matrixΥ(k + 1).

4. If ‖Υ(k + 1) − Υ(k)‖ < ε stop the algorithm,
otherwise continue from step 2.

3.2 Projections of the fuzzy clusters into the input
space of the hybrid fuzzy model

The centers of the clusters (and the corresponding
membership functions) that are returned by the cluster-
ing algorithm, are defined in theinput-outputspace of
the hybrid fuzzy modelDIO. The membership func-
tions that are defined in such a manner can be directly
used for parameter estimation of a hybrid fuzzy model.
However, such a definition is not usable for predicting
the bahaviour of the system in model predictive control
strategies. Namely, it is not possible to determine the
normalized degrees of fulfilment for a particular fuzzy
clusterβj(k), wherej ∈ {1, 2, . . . , C} – see eq. (8) –
because the values of the membership functions depend
on the distances to the centers of the particular fuzzy
clusters in theinput-outputspace of the hybrid fuzzy
modelDIO – see eq. (14). When using the hybrid fuzzy
model for prediction, we are not able to determine these
distances, because we are primarily dealing with a vec-
tor in theinput space of the hybrid fuzzy modelDI .

The membership functions are established by means of
fuzzy clustering in theinput-outputspace of the hybrid
fuzzy modelDIO, therefore, we have to find a way to
appropriately map the information on the membership
functions from theinput-outputspaceDIO to theinput
space of the hybrid fuzzy modelDI , in order to make
the model usable for predicting the behavior of the sys-
tem.

As shown in eq. (14), the values of the membership
functionsµij depend on the distances to the centers
of particular fuzzy clusters in theinput-outputspace
of the hybrid fuzzy modelDIO. Hence, we are able
to determine the appropriate values of the membership
functionsµij by knowing these distances. The prob-
lem is thus reduced to projecting the information on the



distances to the centers of the particular fuzzy clusters
from theinput-outputspaceDIO into theinputspace of
the hybrid fuzzy modelDI .

Let us assume that the norm is defined as in eq. (13).
The sets of points in theinput-outputspace of the hy-
brid fuzzy modelDIO that are equidistant from a cho-
sen point – in our case from the center of a particular
clustercj – can be thus represented geometrically by a
hypersphere with the center in the chosen point in the
input-outputspace of the hybrid fuzzy modelDIO. The
radius of the hypersphere defines the distance from the
chosen point. The dimension of the hypersphere is de-
fined by the dimension of theinput-outputspaceDIO,
i.e., by the number of inputs and outputs of the hybrid
fuzzy model.

The mathematical definition of a hypersphere in the
input-outputspace of the hybrid fuzzy modelDIO is
given in eq. (16).

[x− cj ]
T · [x− cj ] = r2j = ‖x− cj‖2,

wherej ∈ {1, 2, . . . , C}.
(16)

In eq. (16), vectorx denotes a point in theinput-
outputspace of the hybrid fuzzy modelDIO lying on
the hypersphere with the center incj . The radius of
the hypersphere is calculated using the Euclidean norm
rj = ‖x − cj‖. The dimensions of the vectorsx and
cj are defined by the dimension of theinput-output
space of the hybrid fuzzy modelDIO. Indexj, where
j ∈ {1, 2, . . . , C}, stands for the index of the particular
fuzzy cluster we are dealing with.

As described in section 2.2, there is one functionfjd
defined for every single ruleRjd in the hybrid fuzzy
model. If we assume the functionfjd is affine, as shown
in eq. (5), we can regard it as a representation of an
affine submodel in the case thatβj = 1 andβk = 0, for
k 6= j, andq = d.

The sets of points in theinput-outputspace of the hy-
brid fuzzy modelDIO that are defined by the affine
functionfjd can be represented geometrically by a hy-
perplane in theinput-outputspace of the hybrid fuzzy
modelDIO.

The mathematical definition of a hyperplane in the
input-outputspace of the hybrid fuzzy modelDIO is
given in eq. (17).

[x− sj ]
T · nj = 0,

wherej ∈ {1, 2, . . . , C}. (17)

In eq. (17), vectorx denotes a point in theinput-output
space of the hybrid fuzzy modelDIO lying on the hy-
perplane, which is defined by an arbitrary pointsj lying
on the hyperplane and the normal vectornj . For clarity
reasons, it is possible to assume – without losing gener-
ality – thatsj is the point lying on the hyperplane (17),
which is the closest to the corresponding center of the

fuzzy clustercj . If the center of the fuzzy clustercj lies
on the hyperplane (17), the pointsj coincides with the
center of the fuzzy clustercj . Again, the dimensions of
the vectorsx, sj andnj are defined by the dimension of
the input-outputspace of the hybrid fuzzy modelDIO.

The vectorx, which is defined in theinput-outputspace
of the hybrid fuzzy modelDIO, can be divided into the
componentsxI , which are defined in theinput space
of the hybrid fuzzy modelDI , and the componentxO,
which is defined in the theoutputspace of the hybrid
fuzzy modelDO, as shown in eq. (18).

x =

[

xI
xO

]

(18)

When using the hybrid fuzzy model for predicting the
system behavior we only deal withxI , and not with
xO. However, below we show that this is a manageable
problem.

If we assume thatxO is a parameter, then the param-
eterized equations (16) and (17) define a contour in
the input-outputspace of the hybrid fuzzy modelDIO.
The contour represents the intersection of a hypersphere
(16) and a hyperplane (17). When treating the existence
of the contour, we have to deal with three alternatives.

• If 0 < rj < rj,min, then the contour does not
exist.

• If rj = rj,min, then the contour degenerates into a
point.

• If rj,min < rj < ∞, then the contour is a hyper-
circle.

In the aforementioned conditions,rj,min denotes the
minimal value of the parameterrj , which assures the
existence of the intersecting hypercircle.

Obviously, we deal primarily with the third alterna-
tive, i.e., the case that the contour is a hypercircle. A
hypercircle defined in such a manner represents the
points in theinput-outputspace of the hybrid fuzzy
modelDIO, for which the the normalized difference
between vectors equals the radius of the hypersphere
(16) ‖x − cj‖ = rj , and at the same time lie on the
hyperplane (17). Hence, the eq. (19) holds.

0 ≤ rj,min ≤ rj <∞ (19)

In case that the center of the hypersphere (16)cj lies on
the hyperplane (17), thenrj,min = 0.

The hypercircle defined in such a manner can be pro-
jected into theinput space of the hybrid fuzzy model
DI . Therefore, we can obtain a hyperellipse, which de-
fines the points in theinput space of the hybrid fuzzy
modelDI , which can be assigned the valuerj .

The mathematical definition of a hyperellipse in thein-
put space of the hybrid fuzzy modelDI is given in eq.
(20).



[xI − sj,I ]
T Arj [xI − sj,I ] = r2j ,

wherej ∈ {1, 2, . . . , C} and0 ≤ rj,min ≤ rj <∞.

(20)

In eq. (20), vectorxI denotes a point in theinput space
of the hybrid fuzzy modelDI ; sj,I stands for the center
of the hyperellipse in theinputspace of the hybrid fuzzy
modelDI , which is obtained by projecting the center of
the hyperspheresj from the input-outputspace of the
hybrid fuzzy modelDIO into theinputspace of the hy-
brid fuzzy modelDI ; the square matrixArj geometri-
cally defines the orientation and lengths of the semiaxes
of the hyperellipse.

The value of the parameterrj defines different hyperel-
lipses in theinput space of the hybrid fuzzy modelDI .
It goes without saying that eq. (19) must hold.

In the described manner, we can thus deriveC functions
that are defined in theinput space of the hybrid fuzzy
modelDI . The functions assign a valuerj(xI) to every
pointxI (for everyj ∈ {1, 2, . . . , C}) as shown in eq.
(21).

rj : DI → [rj,min,∞),

rj : xI 7→ rj(xI),

wherej ∈ {1, 2, . . . , C}.
(21)

If we know the functionsrj(xI) for every j ∈
{1, 2, . . . , C}, we can derive the membership functions
that correspond to the results of the clustering algo-
rithm and that are defined in theinput space of the
hybrid fuzzy modelDI . The membership functions
assign a valueµj(xI) to every pointxI (for every
j ∈ {1, 2, . . . , C}) as shown in eq. (22).

µj =
1

∑C

k=1

(

rj
rk

)
2

m−1

,

wherej ∈ {1, 2, . . . , C}.
(22)

The membership functions defined in eq. (22) can be
directly implemented in the hybrid fuzzy model for pre-
dicting the system behavior – see eq. (6) – i.e., for deter-
mining the membership values corresponding to every
particular clusterβj(k), wherej ∈ {1, 2, . . . , C} – see
eq. (8).

3.3 Global linear model

The hybrid fuzzy system with a common consequence
structure (described in subsection 2.2) can be expressed
as a global linear model. The input-dependent parame-
ters given in eq. (23) can be derived from eq. (10).

Θ̃(k) = Θ(k) β(k)T (23)

In this case the hybrid fuzzy model output (6) can be
described as in the following equation.

ŷp(k + 1) = Θ̃(k)T ψ(k) (24)

3.4 Preparation of the data for estimation of the
parameters of the hybrid fuzzy model

The hybrid fuzzy model parametersa1jd, ... , anjd,
b1jd, ... , bmjd andrjd have to be estimated for each
rule R

jd; j = 1, ...,K and d = 1, ..., s. To put it
another way, all the matricesΘd have to be established
(see eq. (10)).

The regression matrixΨjd for the ruleRjd in eq. (25)
is obtained by using the whole set of input data for the
hybrid fuzzy system. Here, indexk runs fromk1 to
kPjd, wherePjd denotes the number of input-output
data pairs corresponding to the ruleRjd.

However, only data from time-stepsk that comply with
the conditions in eqs. (26) and (27) are actually used
for constructing the regression matrixΨjd. Here,δ de-
notes a small positive number. Since the model param-
eters are obtained by matrix inversion (described later
in this section), compliance with eq. (27) is essential
for obtaining suitably conditioned matrices.

Ψjd =







βj(k1) ψ
T (k1)

...
βj(kPjd) ψ

T (kPjd)






(25)

q(k) = d (26)

βj(k) ≥ δ (27)

The output variable of the systemy is included in the
output data vectorYjd, which corresponds to the rule
R

jd, as written in eq. (28). Again, only data from
time-steps(k + 1) that comply with the conditions in
eqs. (26) and (27) are actually used for constructing the
output data vectorYjd.

Yjd =







βj(k1) y(k1 + 1)
...

βj(k1) y(kPjd + 1)






(28)

The output contribution̂yjdp (k+1) corresponding to the
ruleRjd is written in eq. (29).

βj(k1) ŷ
jd
p (k + 1) = Θ

T
jd (βj(k1) ψ(k)) (29)

Here, vectorΘjd represents a column in the matrix
Θd, which contains the parameters of the hybrid fuzzy
model corresponding to the ruleRjd as denoted in eq.
(30).

Θ
T
jd = [a1jd ... anjd b1jd ... bmjd rjd] (30)



3.5 Estimation of the parameters of the hybrid
fuzzy model by means of a modified least-
squares method

According to eqs. (25), (28) and (29), the hybrid fuzzy
model parameters for the ruleRjd can be obtained us-
ing the least-squares identification method as written in
eq. (31).

Θjd = (ΨT
jdΨjd)

−1
Ψ

T
jdYjd (31)

By calculating the hybrid fuzzy model parameters for
the whole set of rulesRjd; j = 1, ...,K and d =
1, ..., s, the hybrid fuzzy model is finally established.

The parameters of the hybrid fuzzy model are estimated
on the basis of measured input-output data using the
least-squares identification method. The approach is
based on decomposition of the data matrixΨ intoK · s
submatricesΨjd. Hence, the parameters for each rule
R

jd (j = 1, ...,K andd = 1, ..., s) are calculated sep-
arately. Due to better conditioning of the submatrices
Ψjd, compared to the conditioning of the whole data
matrix Ψ, this approach leads to a better estimate of
the hybrid fuzzy parameters, or to put it in another way,
the variances of the estimated parameters are smaller
compared to the classic approach given in the literature
[18, 19, 17, 20].

The described instantaneous linearization generates the
parameters of the global linear model (see eq. (23)),
which depends on the antecedents of the hybrid fuzzy
systemq(k), y(k), ..., y(k−n+1), u(k), ..., u(k−m+
1). In the case of MPC, the global linear parameters can
be used directly to predict the behavior of the system.
In this case, the controller has to adapt to the dynamic
changes online.

4 Batch reactor

The presented identification method for systems that
can be formulated as hybrid fuzzy models has been
tested on a simulation example of a real batch reactor
[13] that is situated in a pharmaceutical company and is
used in the production of medicines. The goal is to con-
trol the temperature of the ingredients stirred in the re-
actor core so that they synthesize into the final product.
In order to achieve this, the temperature has to follow
the reference trajectory given in the recipe as accurately
as possible. In addition, the temperature in the reactor’s
water jacket should be constrained between a minimum
and maximum value. A scheme of the batch reactor is
shown in fig. 1.

The control demands can be achieved using a model
predictive control strategy. However, in order to imple-
ment such an approach, a suitable model of the system
is needed. Therefore, we develop a hybrid fuzzy model
of the batch reactor using the proposed identification
approach.

TC TH

Tin

kM Φ (1 – kM) Φ

Φ m, c, T

S, λ

mw , cw

Tw

kM Φ
kHkC

T0

Fig. 1 Scheme of the batch reactor

4.1 Modelling and identification

In order to identify the hybrid fuzzy model the batch
reactor we need appropriate input-output signals that
enable the estimation of the dynamics of the system.
The input signals have been generated using a pseudo-
random generator, whereas the output signals are rep-
resented by the recorded responses of the system (for
detailed information see [21]).

The model of the batch reactor is derived in several
steps.

• First, we split the multivariable system into two
simpler subsystems with multiple inputs and a sin-
gle output (MISO).

• Taking into account the influence of the outputs on
both subsystems we establish the structure of the
submodels for each subsystem.

• We identify each subsystem using the method de-
scribed in section 3.

According to heat flows that occur in the batch reac-
tor we can split the system into two subsystems, which
primarily deal with:

• the temperature in the core of the batch reactorT ;

• the temperature in the water jacket of the batch re-
actorTw.

In this manner we take advantage of the prior knowl-
edge of the structure of the system: we conduct a sort of
a grey-box identification, which presents a compromise
between ablack-box identificationand puretheoretical
modelling.

The temperature in the core of the batch reactorT de-
pends only on the heat conduction between the core and
the water-jacket of the batch reactor.

We are therefore dealing with a MISO model as shown
in eq. (32). The regressor consists of the temperature



in the water jacketTw(k) and in the coreT (k) of the
batch reactor in the actual time-stepk.

T̂ (k + 1) = f(Tw(k), T (k)) (32)

We assume that the heat flow is proportional to differ-
ence between the temperature in the water jacketTw(k)
and in the coreT (k) of the batch reactor. Hence, we can
derive a linear 1st-order model as shown in eq. (33).

T̂ (k + 1) = θT [Tw(k) T (k)]
T (33)

After conducting a least-squares estimation we obtain
the following parameters.

θ = [0.0033 0.9967]
T (34)

The temperature in the water jacket of the batch reactor
Tw depends on the heat flow between the water jacket
and the core and betwen the water jacket and the sur-
roundings. In addition, we have to take into account the
heat flow due to inflow and outflow of the water in the
jacket of the batch reactor.

We are therefore dealing with a MISO model as shown
in eq. (35). The regressor consists of the temperature
in the water jacketTw(k) and in the coreT (k) of the
batch reactor and the input signals, i.e., the position of
the mixing valvekM (k) and the hot-kH(k) and cold-
water valveskC(k) in the actual time-stepk.

T̂w(k + 1) = F (Tw(k), T (k), kM (k), kC(k), kH(k))
(35)

Since the dynamics concerning the temperature the wa-
ter jacket of the batch reactorTw(k) involve both hybrid
and nonlinear properties, the submodel will be formu-
lated as a hybrid fuzzy model.

A general modelling and identification procedure is in-
troduced in sections 2 in 3. By following the aforemen-
tioned procedures we obtain the following hybrid fuzzy
model of the batch reactor. We defineC = 5 clusters
for each operating mode.

The output of the model in a compact form is given in
eq. (36).

T̂w(k + 1) = β(k, q)ΘT
w(q) [Tw(k) T (k) kM (k) 1]

T

(36)

The discrete dynamics (operating mode) of the model
are defined in eq. (37).

q(k) = q(kH(k), kC(k)) =

=

{

1 ; kC(k) = 0
∧

kH(k) = 1
2 ; kC(k) = 1

∧

kH(k) = 0

(37)

The parameters of the model are given in eqs. (38) and
(39).

Θw1 =

[

0.6312 0.9257 0.9361 0.9404 0.9277

0.0400 0.0513 0.0384 0.0490 0.0515
1.7115 12.5240 6.9758 19.3915 16.8357

22.4874 0.7210 1.0316 0.1955 0.5233

]

(38)

Θw2 =

=

[

0.9059 0.9337 0.9462 0.6279 0.6312
0.0630 0.0468 0.0359 0.0404 0.0400

−10.8609 −4.5854 −1.5090 −15.3616 −14.9129
0.8869 0.4228 0.3163 19.3905 18.9084

]

(39)

4.2 Validation

We have validated the obtained hybrid fuzzy model by
comparing its responses to the responses of the orig-
inal batch reactor model. The input signals have been
generated using a pseudorandom generator (for detailed
information see [21]). We have recorded both measur-
able outputs, i.e., the temperature in the coreT and the
temperature in the water jacket of the batch reactorTw.

Figure 2 shows a closeup of the trajectory of temper-
ature in the water jacket of the batch reactorTw ob-
tained by a simulation using the hybrid fuzzy model of
the batch reactor. The dotted line represents the original
response of the batch reactor to the input signals.
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Fig. 2 The response of the hybrid fuzzy model to the
validation input signals (solid line) and the original re-
sponse of the batch reactor (dotted line).

For validation purposes, we can calculate the following
parameters that reflect the identification quality.

• The average squared discrepancy of the tempera-
ture in the water jacket of the batch reactorTw.

J̄Tw
= 1.0474 (40)



• The average squared discrepancy of the tempera-
ture in the core of the batch reactorT .

J̄T = 0.5574 (41)

5 Conclusion
The complex hybrid and nonlinear nature of many pro-
cesses that are met in practice causes problems with
both structure modelling and parameter identification;
therefore, obtaining a model that is suitable for MPC
is often a difficult task. The hybrid fuzzy model rep-
resents a convenient framework for modelling complex
systems for control purposes in practice. However, it
is often difficult to identify a complex nonlinear hybrid
system and formulate it as a hybrid fuzzy model.

The identification method presented in this paper strives
to overcome this obstacle by using a fuzzy clustering
algorithm for identification purposes and project the re-
sulting clusters defined in theinput-outputspace of the
hybrid fuzzy modelDIO into theinputspace of the hy-
brid fuzzy modelDI . In this manner, we can obtain a
hybrid fuzzy model suitable for model predictive con-
trol purposes.

We verified the identification approach on a hybrid non-
linear batch reactor example. The result suggest that
the batch reactor can be efficiently identified and for-
mulated as a hybrid fuzzy model, which can eventually
be used in a model predictive control algorithm.
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