
DEVELOPMENT AND IMPLEMENTATION OF A

DOMAIN MODEL FOR PERSISTENCE AND CODE

GENERATION FOR CONSISTENT MATERIAL

FLOW SIMULATIONS WITH MILAN

Paul Jahr, Lars Schiemann, Volker Wohlgemuth

HTW Berlin

University of Applied Science,

Industrial Environmental Informatics Unit

Wilhelminenhofstr. 75A, 12459 Berlin, Germany

paul.jahr@student.htw-berlin.de

lars.schiemann@htw-berlin.de

volker.wohlgemuth@htw-berlin.de

Abstract

This paper gives an introduction to the domain model of the material flow

simulator MILAN, showing the advantages of domain driven design. MILAN

incorporates a component based event discrete infrastructure with material flow

analysis functionality. It is built on the open source plugin-based rich client

platform EMPINIA. MILAN extends the framework towards the specific field

of material flow simulation. The concept of material flow simulation combines

the approach of production-oriented, job-related simulation and material flow

analysis for the application field production systems. EMPINIA offers a Domain

Specific Language (DSL) to define a domain model. This approach simplifies

the complexity of designing the domain logic providing best practice and good

tested code. The domain, for which the material flow simulator MILAN was

developed, consists of model, experiments, simulation entities and material flow

definitions. Additional simulation entities and their relations can be developed

and added to MILAN respectively existing components can be customized much

more easily utilizing this mechanism.

Keywords: Event Discrete Simulation, Production Systems, Plugin-based Components,

EMPINIA Framework, Material Flow Simulation

Presenting Author’s biography

Paul Jahr is a master student and Lars Schiemann is a master of science

of industrial environmental informatics at HTW Berlin. Both are core

developers of the EMPINIA framework since 2006 and are

professionals in Microsoft .Net. Together they designed and developed

most parts of the event discrete simulation tool MILAN.

mailto:paul.jahr@student.htw-berlin.de
mailto:paul.jahr@student.htw-berlin.de
mailto:paul.jahr@student.htw-berlin.de
mailto:lars.schiemann@student.htw-berlin.de
mailto:Volker.Wohlgemuth@fhtw-berlin.de

1 Introduction

The material flow simulator MILAN was developed

during the EMPORER project which was funded by

the German Ministry for Education and Research

(BMBF) from 2006 to 2009. The goal of this project

was to provide an open source framework for a fast,

easy and lightweight development of applications in

the field of environmental management information

systems (EMIS), including a detailed support for the

solution of certain domain specific problems (e.g.

material flow analysis, simulation, handling of

hazardous materials etc.) (cf. [7] and [10]). One

outcome is the EMPINIA framework which is freely

available under [11]. EMPINIA supports rapid

application development with a highly extensible

RCP, like Eclipse (cf. [12]), based on the Microsoft

.NET technology.

The main function of the EMPINIA framework is to

offer a plugin mechanism where developers can add

any kind of extension. An extension is always added

to an existing extension point. Extensions themselves

can be further extended if they define their own

extension points. EMPINIA provides modules for

designing an application with graphical user interface

(GUI) and other standard software components. This

enables application developers to concentrate on their

specific problem domain instead of doing repetitive

software developing tasks, such as persistence,

logging, application and user settings, message

notification and user interface design.

Fig. 1 EMPINIA and EMPORER architecture

EMIS are complex applications which combine many

different fields of interest. Developing an EMIS is

difficult, expensive and needs interdisciplinary

knowledge (cf. [8]). The approach of the EMPORER

project was to reduce this effort by also creating a set

of extensions, which address common needs of many

EMIS problems. The result is the EMPORER

framework/toolkit, which offers independent parts like

material management, simulation capabilities and data

analysis functionalities (cf. Fig. 1).

2 The Material Flow Simulator MILAN

MILAN was implemented as a prototype for an EMIS

application based on EMPINIA. It combines the

ecological material flow analysis perspective with

economical job-oriented simulations of a certain under

investigation, e.g. a production plant. It includes the

discrete event simulation infrastructure with material-

accounting and -management functionality and so

facilitates optimizations from economical and material

flow based perspective at the same time. Thus, it

respects economical impacts on ecological changes

and vice versa (cf. [8] and [9]).

Fig. 2 MILAN as a set of EMPINIA components

MILAN is build upon a set of specialized extensions

of EMPINIA. Besides the components which come

with EMPINIA there are some EMIS specific

extensions taken from the EMPORER EMIS toolkit

and combined into MILAN (cf. [2], [5] and [6]). The

architecture is shown in Fig. 2 and described in the

following part.

2.1 Infrastructure

The simulation capabilities of the MILAN software

consist of the following elements:

 The simulation core consists of the central

simulation service, interfaces and abstract base

classes for models, experiments and model

entities. These are used in each kind of simulation.

The simulation service provides models and

experiments in a way that other software parts can

use them. The simulation core gives models and

their entities access to the functionality of a

domain model service. A domain model defines

the domain of an EMPINIA-based application, its

elements and their relations as well as rules that

apply to this domain. MILAN consists of the

domain 'simulation' with elements like 'model' and

'entity'. Among other important functionalities the

domain service provides possibilities to persist its

elements. That is the reason why this service is

used in MILAN to save and load formerly created

models.

 A bundle for discrete event simulation extends

the simulation core with classes specific to the

discrete event simulation approach. These classes

are using an EMPINIA extension that enables the

development of logical graphs in order to combine

entities of a model to a network diagram. The

basic generic experiment component is extended

with an event list and a scheduler, which are used

to simulate discrete time steps.

 The simulation components have access to many

stochastic distributions, e.g. Normal, Bernoulli,

and Exponential. They are used to generate

streams of random numbers, for example to

schedule an event which follows a certain arrival

probability. Additional to these existing

distributions user-defined distributions can also be

added via plugins.

The common features of the MILAN software consist

of the following elements:

 Graphical manipulation of building blocks leads to

a faster development of a model. The graph editor

can be used to manipulate and create models. The

editor itself can work in different domains.

Domain specific functionality and the graphical

representation have to be defined by plugin

developers enabling the editor to handle new

domains and their components, which are also

using plugin definitions.

 Manipulating model parameter for the simulation

and material flow perspective is done by means of

property editors enabling a simple and consistent

way of setting values for all types of properties.

For the production system domain there are

standard editors implemented. These allow the

change of component specific parameters like

setting distributions, accounting rules, queue

lengths or capacities etc.

 No analysis can be done without results. These are

shown in reports which can be designed with the

help of the reporting system. The data for the

reports is aggregated during simulation runs by a

system of observers that listen to changes in the

material accounting and simulation entities.

The material flow capabilities of the MILAN software

consist of the following elements:

 A material management component allows

creating, deleting and organizing materials as well

as bill of materials. A user interface view for this

kind of data is added through which the modeler

can show and manipulate these items.

 The material accounting system accesses the

material management to add or remove a custom

amount of materials of a certain type. By its means

it is possible to show, save and manage material

and energy bookkeeping resulting from the

simulation. The bookkeeping is realized using

accounting rules, which can be added by the user

to all kind of discrete events in combination with

relevant model components. Definition and

structure of rules are defined with help of the

extension mechanism as extensions. Afterwards

these rules can be used and configured. Following

the observer design pattern which is used by the

material accounting system the simulation

components do not 'know' anything about material

flows and the bookkeeping of material input and

output data. Thus a developer of simulation model

components does not necessarily have to consider

these mechanisms. Indeed the simulation operates

independently of any material bookkeeping issues.

The material flow system just listens to the

simulations progress and reacts to occurring events

if one of its rules applies.

For MILAN it was necessary to provide libraries of

simulation components (e.g. for production systems:

machines, transporters, storage) to give the ability to

simulate a common production system with MILAN.

Simulation entities can be added to MILAN as

building blocks via the EMPINIA plugin mechanism

to build a user-specific model. These components can

either be generally applicable or might be used for a

very specialized purpose. Specialized entities are

developed for the production sector (e.g. semi-

conductor sector with coater, stepper and dispatcher;

cf. [8]) or they represent a concrete production

machine of a certain company with its specific

parameters. In contrast general components are highly

abstracted and are applicable for many production

systems. The parameterization of these entities is more

abstract but closer to the specific problem then a

common simulation language or standard simulation

software. An abstract set of components for

production systems comes with MILAN and is ready

for modeling production systems (cf. [2] and [6]). The

components were influenced by [3].

While a simulation runs, the internal behavior of such

a simulation entity can take over different states.

These states represent a passive or active activity. At

the current development stage, there are several

states/activities available, which can be used in

entities, like 'Failure', 'Maintenance' and 'Setup' for all

kind of machinery. The states are implemented as

plugins and attached to the entity extensions, so that

new states can easily be added and reused for the

development of new or more complex simulation

components. Today, the following parts are available.

 Workstations represent all types of machines,

which perform tasks on products using a certain

amount of simulated time. They can be configured

to transform a set of products into another set

using specific rules that define the amount of

incoming and outgoing products. Workstations can

breakdown (so the will be unavailable for a certain

amount of time), can be maintained or can have a

setup duration.

 Conveyors are one way to model the transport of

products between simulation entities.

 Transporter systems define the second way of

moving products between entities. They use a

configurable set of transport units (e.g. trucks) to

transport products. The transporters are so called

resources that are defined inside the model using a

resource pool. The resources of such a pool can be

shared by several transporter systems.

 Buffers are entities that store products until they

are needed by downstream simulation parts.

 Synchronization points can be used to combine

parallel production chains or divide one stream of

products into different chains using specific

transformation definitions.

 Entry points define one kind of system boundary

of a model. Entry points are creating products

according to stochastic distributions and are

feeding these products into the model.

 Exit points mark the other kind of system

boundary where products are removed after they

completed their way through the production

model.

2.2 Simulation with MILAN

The execution of a material flow simulation requires

the creation of a model that represents the system

under investigation. Up to now this requires two

models, one for the material flow analysis and another

one for the simulation-related aspects. The material

flow simulator MILAN however is able to integrate

both specific views into one model. It retains the

common model structures and adds the different sets

of parameters. These parameters like sets for material

accounting or probability distribution streams can be

added subsequently to the model structure.

The modeling is done using a graphical network

consisting of nodes and edges. The nodes describe

important model elements, where products are

handled or stay for processing for a certain period of

time. Edges work as logical connections between

these elements and are also intended to show the

process flow direction.

Once the modeling is complete the parameterization

of the particular stations can be started. Depending on

a specific model element these parameters can be very

different from each other. Workstations for example

have a processing-time, conveyors a loading and

transportation time. In cases where no suitable

standard component to represent the actual system can

be found, new components can be added using the

extension mechanism. This enables developers to

create their own components or to use component

libraries from other parties. The modeling of material

and energy flows is done with the help of appropriate

rules. According to these rules a certain set of

materials is accounted depending on the occurrence of

previously assigned events. At the end of the

modeling phase the duration of the simulation can be

chosen. From material flow analysis perspective this

can be the same as a balancing period in a static

material flow analysis model.

As soon as the right model structure, parameters and

times are configured the material flow simulation is

ready for simulation experiments. Experimentation

can be done by variation of parameters. Once a

simulation ends its data can be visualized in a

reporting view (e.g. balance sheets and simulation

results). The user is now able to analyze if a

simulation run is better than another from the material

flow perspective and the job-based simulation

perspective at the same time.

3 Domain Model

Domain entities are software objects. But in difference

to “normal” software objects in an object-oriented

manner they are not used to build the whole

application infrastructure. They only represent distinct

parts of the problem domain, e.g. for simulation:

entity, model, experiment and their parameterizations.

3.1 Architecture and implementation

The domain layer provides a central and consistent

access to the entities from all over the EMPINIA

platform. All changes of domain entities (add, remove,

update) are first validated via user defined domain

rules and can also be rolled back on demand before

they are persisted. In the simulation context this

means you can change the modeling capabilities by

defining a domain specifying entities and rules. This

rules can be used to validate inputs or restrict the

remove- and adding-process of new simulation

component instances respecting their dependencies.

Modifications on the components interaction

capabilities can be done by rewriting the specific rule

definition or add a new one, compile the plugin

containing this rule and replace the old plugin with the

new one. After a restart, the application will be able to

apply the new rules.

Additional Domain entities and rules can be added

like every extension in EMPINIA without touching

the compiled MILAN software itself. Newly created

features are validated, initialized and their

functionality is provided in the user interface at

runtime of the application after the containing package

was added. Extending EMPINIA can be realized using

.NET class attributes or XML-declarations.

To create the domain model EMPINIA supports

developers in many ways. As mentioned before,

applications based on the EMPINIA framework can

be extended by creating so called extensions. An

extension can either be any kind of configuration or

new program code (written in one of the many .NET

programming languages). The simulation

infrastructure provides a set of extension points. As

mentioned in 2.1 the infrastructure itself, as well as

the event-discrete simulation domain are extensions to

the basic framework functionality. To be able to

define production system components in this domain,

all currently required entities had to be built as

EMPINIA extensions. Most of the more complex

object-oriented classes are composed of a set of

reusable basic building blocks that for example, define

different states an entity can be in during a simulation

run. This part of the creation of domain entities

requires very specific knowledge in the domain of

event-discrete simulation and had to be programmed

manually. Exactly this task can (and should) be the

focus of developers of simulation components.

3.2 Domain Code Generation

Besides their logic (behavior) many of the properties

of the simulation components (structure, state) needs

to be persistable (e.g. to be able to safe a model

instance with all its containing entities and their initial

setup or to save results of a simulation run). Often

code in this area (especially for properties with

simple, single-valued types) has a very similar

structure and can be generated by a code generator.

Generally, a code generator is a program that can

transform some type of structure definition into source

code written in one or more specific programming

languages (e.g. recurring implementation details such

as classes, interfaces, properties). EMPINIA provides

a code generator, which is able to produce a variety of

code artifacts needed during the development of

domain entities. It can generate huge parts of code to

access and observe the domain entities properties

conveniently. Because a code generator always

generates the same kind of structures based on its

available generation abilities (templates), all of its

newly generated artifacts automatically gain quality if

the underlying templates get improved. The generator

can be extended with additional functionality like the

generation of domain object hierarchies, visual

representations in graphical editors or dialogs and

many more. Because the generation process itself is

very simple (string concatenation of templates with

some variables) it is executed in a fraction of the time

which would be necessary to write the code by hand.

This also greatly reduces the occurrence of errors

because mostly the cause can be found in one of the

templates.

<entity

 name="ExampleEntity"

 baseType="Empinia.Persistence.DomainEntity"

 namespace="Htw.Simulation.Discrete"

 accessRestriction="public">

 <attribute

 name="DomainType"

 parameters="ExampleEntityExtensionId, _

Htw.Simulation.Discrete.Bundle.API,_

typeof(IExampleEntity),_

typeof(ExampleEntity),_

Name = "ExampleEntity""

 target="Class" />

 <property

 name="Name"

 accessRestriction="public">

 <type

 name="System.String" />

 </property>

 <property

 name="AnotherProperty"

 accessRestriction="public">

 <type

 name="System.Int32" />

 </property>

 ...

</entity>

List. 1 Simplified example for a domain code

generation definition for parts of a domain entity

In List. 1 an excerpt of the definition of a simple

example domain entity written in XML is shown. It

defines a domain entity called “ExampleEntity”. The

class should inherit from a base class with common

domain entity behavior (not mandatory). It should

consist of two properties (“Name” and

“AnotherProperty”). Furthermore the class should be

decorated with a class attribute that declares the class

explicitly as an EMPINIA extension to the domain

type extension point.

The declaration of such structures is a subset of the

domain code generation DSL. Given an input like that,

the code generator transforms it into a set of source

code artifacts depending on the requested templates

using the defined structure. To choose the generated

functionality the code generator can be configured

using another subset of the DSL which refers to the

selection of artifact types. This can be relatively

simple things like classes, interfaces, methods and

properties, but also whole class structures,

configuration sets and even tests. As long as a

working template is available and the input is correct,

the generator will produce compliable source code and

valid configuration files.

3.3 Domain Model Persistence

Almost every professional application obviously

needs a mechanism to save the state of the users work

(e.g. a document, table, record and so on). With a

domain model, saving the state of domain entities can

easily be done using an own software layer

(persistence layer). Advantages of this approach are

the concealment of the complexity of persistence

implementations (e.g. relational databases, binary or

text files) and the possibility to change the complete

implementation if it does not fit the needs of the

developer anymore. The domain model used in this

application provides an automatic persistence

mechanism to handle such functionality. Properties of

a domain entity, which should be persisted, are

defined using a persistence-specific DSL. A

persistence mapper transforms the configuration into

commands to the underlying persistence backend. It

saves, creates, reads and modifies domain entity

instances in a consistent way. The data container is

variable (file, database, webservice etc.). The current

implemented persistence foundation uses the widely

used open source object-relational mapper NHibernate

(cf. [13]) which converts runtime objects in memory

into records in a relational database and vice versa. Its

configuration is done in a similar manner to the

domain DSL described above. Again definitions are

written in XML, using a specific set of elements that

describe relations between classes and their attributes

to tables and columns. An example of such a mapping

definition can be seen in List. 2.

<hibernate-mapping

 assembly="Htw.Simulation.Discrete"

 namespace="Htw.Simulation.Discrete"

 xmlns="urn:nhibernate-mapping-2.2">

 <class

 name="Htw.Simulation.Discrete.ExampleEntity"

 table="EXAMPLE_ENTITIES"

 ...>

 <id

 name="Id"

 column=" EXAMPLE_ENTITY_ID">

 <generator

 class="native" />

 </id>

 <version

 name="ObjectVersion"

 column="NHVersion"

 type="Int32" />

 <property

 name="Name"

 type="System.String"

 length="255" />

 <property

 name="AnotherProperty"

 type="System.Int32" />

 ...

 </class>

</hibernate-mapping>

List. 2 Simplified example for an object-relational

mapping definition (NHibernate 2.2)

The example is related to the previously used sample

of a domain entity (“ExampleEntity”, cf. List. 1). It

shows the mapping of the class to a table called

“EXAMPLE_ENTITIES”. In the lower part both

properties are declared. The other two declarations are

persistence specific. The element “id” defines a

column that contains the primary key of the table

which can be used in conjunction with other entities

persistent data (stored runtime instance relations). The

attribute “native” tells the underlying database

management system should use its own build-in

algorithm to generate unique values for primary keys.

The “version” element creates a special table column

that contains a version number for the record to track

changes made to the stored entity instance.

The example only shows a very small subset of the

possible mapping possibilities of NHibernate 2.2. It is

obvious, that the shown code could easily also be

generated during the domain code generation. The

generation of persistence DSL artifacts will probably

implemented into the domain code generation DSL

very soon.

4 Vision

The code generation can be used for handling

repetitive work and reduce it for a developer. In

EMPINIA many components are used by domain

entities. Such usage can be generated in the future.

This concerns for example visual representation of the

domain component in editors and dialogs of the user

interface of the EMPINIA-based application.

Designing a domain model via user interface editors

would be a nice feature to avoid mistakes in writing

XML-declarations. The bypass over XML can then be

dropped. A possible realization for example could be a

Microsoft Visual Studio add-in which works like the

integrated class diagram editor in Visual Studio.

The persistence mechanism of EMPINIA is currently

restricted to relational databases accessed by using

NHibernate. In some cases a more lightweight

implementation would be preferable e.g. ASCII-

serialization like XML or JASON. The opportunity to

switch between these mechanisms will increase the

field of operation of EMPINIA.

The design of simulation entities is connected with

high development effort. To lower this work the

activity/state extensions in combination with code

generation can be equipped to designing a component

with the visual graph editor of MILAN. This can be

realized for example like in LABView (cf. [14]).

5 References

[1] Busse, T.; Denz, N.; Page, B. (2008): A plugin-

based framework for domain models and

persistence in environment management

information systems. In: Möller, A.; Page, B.;

Schreiber, M. (Eds.) (2008): EnviroInfo 2008 -

Sustainable Development and Risk Management -

Proceedings of the 22nd International Conference

on Environmental Informatics for Environmental

Protection. Lüneburg. Shaker Verlag, Aachen, S.

593-602

[2] Jahr, P.; Schiemann, L.; Mäusbacher, M.; Panic,

D.; Schnackenbeck, T.; Wohlgemuth, V. (2009):

Development of simulation components for

material flow simulation of production systems

based on the plugin architecture framework

EMPINIA. In: Wohlgemuth, V.; Page, B.; Voigt,

K. (Eds.): EnviroInfo 2009 - Environmental

Informatics and Industrial Environmental

Protection – Concepts, Methods and Tools.

Proceedings of the 23nd International Conference

Environmental Informatics, Volume 2, HTW

Berlin. Shaker Verlag, Aachen, p. 161-169

[3] Košturiak, J.; Gregor, M. (1995): Simulation

von Produktionssystemen. Springer Verlag, Wien.

[4] Page, B.; Kreutzer, W. (2005): The Java

Simulation Handbook: Simulating Discrete Event

System with UML and Java. Shaker Verlag,

Aachen.

[5] Panic, D.; Schnackenbeck T.; Wohlgemuth V.

(2008): Erweiterung eines Open Source

Rahmenwerkes um Simulationsfunktionalität für

betriebliche Umweltinformationssysteme. In:

Wittmann, J., Wohlgemuth, V. (Eds.): Simulation

in den Umwelt- und Geowissenschaften. Shaker

Verlag, Aachen, p. 127-137

[6] Schiemann, L (2009): Implementierung eines

Stoffstromsimulators für Produktionssysteme auf

Basis des Open Source Rahmenwerkes

EMPINIA. Masterthesis, HTW Berlin.

[7] Schnackenbeck, T.; Mäusbacher, M.; Panic, D.;

Wohlgemuth, V. (2009): Conceptual Design and

Implementation of a Tools Platform for the

development of EMIS based on the open-source

plugin-framework EMPINIA. In: Wohlgemuth,

V.; Page, B.; Voigt, K. (Eds.): EnviroInfo 2009 -

Environmental Informatics and Industrial

Environmental Protection – Concepts, Methods

and Tools. Proceedings of the 23nd International

Conference Environmental Informatics, Volume

2, HTW Berlin. Shaker Verlag, Aachen, p. 149-

154.

[8] Wohlgemuth, V. (2005): Komponentenbasierte

Unterstützung von Methoden der Modellbildung

und Simulation im Einsatzkontext des

Umweltschutzes. Shaker Verlag, Aachen.

[9] Wohlgemuth, V.; Kreutzer, W.; Page, B.

(2006): Combining discrete event simulation and

material flow analysis in a component-based

approach to industrial environmental protection.

In: Environmental Modelling & Software.

Elsevier, New York, p. 1607-1617

[10] Wohlgemuth, V.; Schnackenbeck, T.; Panic, D.;

Barling, R.-L. (2008): Development of an Open

Source Software Framework as a Basis for

Implementing Plugin-Based Environmental

Management Information Systems (EMIS). In:

Möller, A.; Page, B.; Schreiber, M. (Eds.):

EnviroInfo 2008 - Environmental Informatics for

Environmental Protection. Proceedings of the

22nd International Conference Environmental

Informatics - Informatics for Environmental

Protection, Sustainable Development and Risk

Management, September 10-12, 2008, Leuphana

University Lüneburg. Shaker Verlag, Aachen,

p.584-592

[11] http://www.empinia.org

[12] http://www.eclipse.org

[13] http://www.nforge.org

[14] http://www.ni.com/labview

