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Abstract  

The application of the nonlinear mixed effects modeling to pharmacokinetics 
can maximize the goals of drug administration from the time a drug is first 
administered in human during the initial phases of development to the routine 
patient care. Nonlinear mixed effects modeling has a pivotal role in population 
pharmacokinetics, which is especially valuable since it targets the patient group 
that will eventually receive the drug of interest. It is applicable in sparse data 
situations, quantifies pharmacokinetic variability at several levels and aims to 
explain the sources of variability. When applied to direct patient care, the 
purpose of nonlinear mixed effects modeling is to provide quantitative and semi-
quantitative guidelines for dosage individualization and optimization. 
Consequently it is of utmost importance in therapeutic drug monitoring. The aim 
of this paper is to present the background, the underlying conceptual theory, and 
the utility of the nonlinear mixed effects modeling approach. A special attention 
is put on the development of covariate sub-models, which aim to identify and 
quantify the sources of interindividual variability in pharmacokinetics. Finally, 
examples of how nonlinear mixed effects modeling can be applied to therapeutic 
drug monitoring in routine care of patients with epilepsy are presented. 
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1 Introduction 
Pharmacokinetics is the science of the kinetics of drug 
absorption, distribution and elimination, i.e. excretion 
and metabolism. It is one of the many biomedical 
disciplines that contribute to the discovery, 
development, and use of drugs. Characterization of 
pharmacokinetics is an important prerequisite for 
determination or modification of drug dosing 
regimens for individuals and groups of patients. The 
study of pharmacokinetics involves both, experimental 
and theoretical approaches. The experimental aspect 
involves the development of biologic sampling 
techniques, analytical methods for the measurement of 
drugs and metabolites in biological samples, and 
procedures that facilitate data collection and 
manipulation. The theoretical aspect of 
pharmacokinetics involves the development of 
mathematical models that predict drug disposition 
after drug administration. The application of statistics 
is an integral part of pharmacokinetic studies. 
Statistical methods are used for pharmacokinetic 
parameter estimation and data interpretation for the 
purpose of predicting and designing optimal dosage 
regimens. Statistical methods are applied to 
pharmacokinetic models to determine data error and 
structural deviations of the pharmacokinetic models 
[1]. 

During the drug development process, a large group of 
patients is tested to determine the optimum dosing 
regimens, which are then recommended by the 
manufacturer to produce the desired pharmacologic 
response in the majority of the intended patient 
population. However, inter- and intra-individual 
variability often result in lack of effectiveness due to 
sub-therapeutic drug concentration levels, or toxicity 
with drug concentration levels above the minimum 
toxic concentration. Both require adjustment to the 
dosing regimen. Clinical pharmacokinetics is the 
application of pharmacokinetic methods to drug 
therapy. It is a multidisciplinary approach to 
individually optimized dosing strategies based on the 
patient’s disease state and all relevant patient-specific 
characteristics. 

2 Population pharmacokinetics 
Pharmacokinetic studies in patients have led to the 
appreciation of the large degree of variability in 
pharmacokinetic parameter estimates that exist across 
patients. Many studies have quantified the effects of 
factors such as age, sex, disease state, genetic 
phenotype, and concomitant drug therapy on the 
pharmacokinetics of drugs to account for the 
interindividual variability. Interindividual variability 
in pharmacokinetics is by many often viewed 
incorrectly as a nuisance factor that must be 
overcome, often through complex study designs, 
control schemes, and restrictive inclusion criteria. The 

subjects of pharmacokinetic studies are usually a 
group of healthy volunteers or highly selected 
patients. Traditionally, the average behavior of a 
group has been the main focus of interest. Study 
design and selection of volunteers who are rigidly 
standardized so that they are as homogenous as 
possible are typical features of traditional 
pharmacokinetic studies. These studies are therefore 
often performed under artificial conditions not 
representative of the real situation in which the drug 
will be used. In contrast to traditional pharmacokinetic 
evaluation, population pharmacokinetic studies (i) aim 
to obtain relevant pharmacokinetic information in 
patients who are representative of the target 
population which is to be treated, (ii) recognize 
sources of variability such as inter- and 
intraindividual, and interoccasion, as important drug 
characteristics that should be identified, (iii) seek to 
explain variability by identifying demographic, 
biochemical, pathophysiologic, and genetic factors 
(covariates) that may influence the pharmacokinetic 
behavior, and (iv) they seek to quantitatively estimate 
the magnitude of the unexplained part of the 
variability in the patient population. The magnitude of 
the unexplained, i.e. random variability is important 
because the efficacy and safety of a drug may decrease 
as unexplained variability increases. Drug 
concentrations outside the target range become more 
likely, the greater the unexplained variability in the 
relationship between the dosage regimen and drug 
concentration. Sources of variability are usually 
categorized as interindividual and residual in nature. 
Residual variation includes intraindividual variability, 
i.e, random changes in a patient’s pharmacokinetic 
parameters values over time, interoccasion variability, 
i.e, changes in a patient’s parameters values from one 
occasion to another, drug concentration measurement 
error, dosing errors, errors in time recording, and 
model misspecifications.  

2.1 Nonlinear mixed effects modeling 

Nonlinear mixed effects models are similar to linear 
mixed effects models with the difference being that 
the function under consideration f(x, θ) is nonlinear in 
the model parameters θ. The model consists of two 
components, the structural model and the statistical or 
variance model. The structural model describes the 
mean response for the population. It is often found 
that the relationship between drug concentrations and 
time may be described by the sum of exponential 
terms. This lends itself to compartmental 
pharmacokinetic analysis in which the 
pharmacokinetics of a drug are characterized by 
representing the body as a system of well-stirred 
compartments with the rates of transfer between 
compartments following first-order kinetics. In the 
case of a drug that seems to be distributed 
homogenously in the body, a one-compartment model 
is appropriate and the relationship can be described by 



the following monoexponential equation as shown in 
Eq. (1). 
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This equation describes the typical time course of the 
drug concentration in plasma (Cp) as a function of 
dose (D), time (t), drug elimination clearance (CL) 
and distribution volume (V). If one has an estimate of 
clearance and distribution volume, the plasma drug 
concentration can be predicted at different times after 
administration of any dose. The quantities that are 
known, because they are either measured or 
controlled, such as dose and time, are called fixed 
effects, in contrast to effects that are not known and 
are regarded as random.  The parameters CL and V are 
called fixed effect parameters because they quantify 
the influence of the fixed effects on the dependant 
variable Cp [2]. 

Similar to a linear mixed effects models, nonlinear 
mixed effects models can be developed using a 
hierarchical approach. Data consist of an independent 
sample of n subjects with the i-th subject having ni 
observations measured at time points ti, 1, ti, 2, …, ti, ni. 
Let Y be the vector of observations, Y={ Y1, 1, Y1, 2, 
…, Yn, 1, Yn, 2, …, Yn, ni}T and let ε be the same size 
vector of random intraindividual errors. In the first 
stage (intraindividual variation level), the model 
describing how the mean profile changes over time is 
Eq. (2) 

 ε+β= ),,( txfY                       (2) 

where x is a matrix of fixed effect covariates specific 
to the subject, and β is a vector of estimable regression 
parameters. For simplicity, x will include t from this 
point. The regression function f depends on β in a 
nonlinear manner. At the second stage (interindividual 
variation level), the possibility that some of the β 
(denoted βi, βi ∈β) can vary across individuals (with 
mean μβi and variance ωβi

2) is allowed, i.e. βi ~ (μβi, 
ωβi

2), and can be explained by a set of subject specific 
covariates z. In other words, βi is not fixed across 
subjects, but allowed to vary, and that variability may 
be explained by subject specific covariates. This stage 
is referred to as a covariate sub-model and relates how 
specific covariates (z) predict the subject-specific 
regression parameters β, Eq. (3) 

 ( )2),,( ii zh βωθ≈β                       (3) 

where θ is a vector of estimable regression 
parameters. Collectively, the set of all ωβi

2 is referred 
to as the variance covariance matrix, denoted Ω. 
Those β that do not vary across individuals are 
refereed to as fixed effects, whereas those that do vary 
across individuals are referred as random effects. The 
structural model across all individuals is then Eq. (4) 

 ),,,( zxfY θβ=                        (4) 

For simplicity, the set of estimable regression 
parameters {β,θ} shall be denoted as θ.  

As for the one-compartment example provided by Eq. 
(1), Y would be plasma drug concentration (Cp), x 
would consist of dose (D) and sample time (t), and β 
would consist of clearance (CL) and distribution 
volume (V), Eq. (5). 
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If clearance and volume of distribution were treated as 
correlated random effects, then ωCL

2 and ωV
2 denote 

the interindividual variability for clearance and 
volume of distribution, respectively, Eq. (6) 
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where ωCL,V is the covariance between clearance and 
distribution volume. Now further suppose that an 
individual’s age was linearly related to clearance. 
Then clearance could be modeled as, Eq. (7) 

 iii AgeCL η+θ+θ= 21                  (7) 

where CLi is the average clearance for an individual 
with Agei, θ1 and θ2 are the intercept and slope, 
respectively, Agei is the age of the i-th subject, and ηi 
is the deviation of the i-th subject from the mean 
clearance of the population having Agei. The ηs are 
assumed to be independent, have mean zero, and 
constant variance ω2. In Eq. (4), age would comprise 
the set z. The hierarchical nonlinear mixed effects 
model can then be written as, Eq. (8) 
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Residual variance models describe the random, 
unexplained variability in the regression function f. 
Hence, the structural model is extended to, Eq. (9) 

 ),,,,( εφθ= zxfY                      (9) 

where ε is the residual term and φ are residual 
variance model parameters. Commonly used residual 
variance functions are additive, constant coefficient of 
variation or proportional, exponential, and combined 
additive and proportional model. Under all these 
models, the generic residuals are assumed to be 
independent, have zero mean, and constant variance 
σ2.  



Returning to the previous structural model, Eq. (1), a 
complete nonlinear mixed effects model can be 
written as, Eq. (10) 

 ij
V

tAge

i

i
ij

i

ijiiii

e
V
DY ε+=

η+θ+θ
−

)( 21

            (10) 

where Di is the dose administered to subject i, Vi is 
the distribution volume in i-th subject, clearance is 
modeled as a random effect that is a linear function of 
patient age, ηi the deviation of for the i-th subject 
from the population mean clearance such that η has 
mean zero and variance ω2, tij is time, and ε is the 
residual deviation of the measured concentration with 
mean zero and variance σ2. 

2.2 Development of a population 
pharmacokinetic model 

The NONMEM package continues to be the most 
widely used software for the population 
pharmacokinetic analysis. Its limitations lie mostly 
with its user interface, which, despite the numerous 
modifications to the code including the NM-TRAN 
preprocessor, remains a warehouse of FORTRAN 77 
subroutines. Recently many application programming 
interfaces to NONMEM have been developed, such as 
Wings for NONMEM, PDx-Pop, and Perl-speaks-
NONMEM. Additionally, several alternatives to 
NONMEM are available and some are still under 
development. The available software for population 
pharmacokinetic analysis has been reviewed by 
Aarons [3]. All software alternatives and methods are 
based on a hierarchical nonlinear mixed effects 
modeling approach described in a previous section. 
NONMEM is especially useful for sparse, randomly 
collected data. Although the data are pooled into one 
data set the individuals are still identifiable, which 
permits different numbers of repeated measurements 
per subject. The inclusion of covariates during the 
estimation procedure offsets unbalanced data. 
NONMEM is able to derive population models when 
only a few samples are available from each individual. 
Consequently, this approach is ideal for studying 
populations, such as the very old, very young or very 
sick, which are most difficult to address. Although the 
study design does not call for the collection of 
samples at specific times, it is important to note that 
some thought must be given to optimal collection 
times. A certain pharmacokinetic parameter can not be 
calculated with any degree of precision unless data are 
available that reflect that parameter.  

The first step in the development of a population 
pharmacokinetic model is to identify the base or 
structural model, which is the model that best 
describes the data in the absence of covariates. It may 
be, however, that a covariate has such a profound 
influence on a particular model parameter, one may 
choose to include that covariate into the base model 
from the start. For instance if a drug is eliminated 

from the body exclusively by the kidney, such as the 
aminoglycoside antibiotic gentamicine, then creatinine 
clearance (CLCr) may be very highly correlated with 
the drug clearance and CLCr may be built into the 
model from the beginning stages. If previous studies 
have identified a structural model one typically 
proceeds from there. In the absence of a known base 
model, a variety of candidate base models, one-, two-, 
and three-compartment models with different 
absorption models, if the drug is given by 
extravascular administration are tried, and the best 
model is chosen using a combination of likelihood 
ratio test, Akaike information criterion, and graphical 
examination using goodness of fit plots.  

2.2.1 Covariate model building 

Once the base model is identified, covariate sub-
models are developed. A covariate is any variable that 
is specific to an individual and may influence the 
pharmacokinetics of a drug. Covariates are classified 
as intrinsic factors (inherited, genetically determined), 
such as age weight height, and race, or extrinsic 
factors (subject to outside environmental influences), 
such as dose, degree of drug compliance, smoking 
status, and presence of concomitant medications. In 
general intrinsic factors do not change over short 
spans of time or at all, whereas extrinsic covariates 
may change many times during a study. Covariates 
may also be classified as either continuous (such as 
age), dichotomous (such as sex), or 
polychotomous/categorical (such as race). One of the 
biggest reasons for using a population approach to 
modeling pharmacokinetics is that subject-specific 
characteristics can be built into the model through 
their associations with model parameters. For 
example, if distribution volume is dependent on 
weight then weight can be built into the model, therby 
reducing both, interindividual variability in volume of 
distribution and unexplained, residual variability. 
When covariates are identified and the interindividual 
variability is sufficiently reduced, individualized 
dosage regimens become possible [2].  

In general, how a covariate is built into the model is 
dependent on the type of variable the covariate is. For 
continuous covariates, covariate sub-models are 
generally the three different functions, linear, 
exponential, or power. Choosing the function broadly 
depends on the modeling approach taken. One such 
approach is covariate screening, in which given the 
population pharmacokinetic model the Empirical 
Bayesian Estimate (EBE) of the pharmacokinetic 
parameter is estimated for each subject. The EBEs are 
then plotted   against subject specific covariates and 
examined for a relationship between the two. If 
examination of the scatter plot shows a straight line, a 
linear model is used. However, if the plot shows 
curvature then exponential or power models are often 
used. More formally a regression line or generalized 
additive model (GAM) can be used to statistically test 



for curvature, nonlinearity or break points. A 
judgment is then made by the modeler as to the nature 
of the relationship between covariate and EBE and 
this relationship is taken forward into the covariate 
sub-model. When the covariate is categorical and 
dichotomous three possible models are typically used: 
additive, fractional change, and exponential. 

The number of parameter - covariate combinations is 
often large (for example, 4 model parameters and 20 
covariates equal 80 potential combinations) and the 
task of identifying the relevant ones can be a time 
consuming exercise. An efficient approach to 
accomplish this is to use Stepwise Covariate Model 
building (SCM) directly in NONMEM [2]. This 
procedure is also known as (orthogonal) Forward 
Selection—Backward Elimination. Stepwise 
procedures in general have been shown to exhibit a 
risk of including false parameter - covariate relations, 
of giving rise to biased estimates of the included 
relations as well as of yielding too narrow confidence 
limits [2]. Other studies have reported that these 
problems may not be large for pharmacokinetic 
models [2]. SCM assumes that there exists a structural 
model, i.e. a model that relates the main response 
variable, for example drug concentrations in 
pharmacokinetics, to the main independent variable, 
for example time since drug administration. The task 
of SCM is to identify the covariates that explain 
variability in the parameters of the structural model. In 
a first step, each relevant parameter - covariate 
combination is added and estimated one by one in the 
structural model. The model with the largest 
improvement over the starting model is retained as the 
starting model for the next step. In each subsequent 
step the remaining parameter - covariate combinations 
are tried. This forward inclusion is continued until no 
improvement can be gained by adding new model 
components. The measure of model improvement is 
usually based on statistical significance. Optionally, 
the forward inclusion step can be followed by a 
backward elimination step. This proceeds according to 
the same general scheme as the forward step, but 
reversely, using stricter improvement criteria. This 
adaptive procedure for covariate model building relies 
heavily on the validity of the statistics used for model 
discrimination. 

2.2.2 Estimation methods 

NONMEM version 5 and higher offers two general 
approaches towards parameter estimation with 
nonlinear mixed effects models, first-order 
approximation (FO) and first-order conditional 
estimation (FOCE), with FOCE being more accurate 
and computationally difficult than FO. FO was the 
first algorithm derived to estimate parameters in a 
nonlinear mixed effects model and was originally 
developed by Sheiner and Beal [4]. FO approximation 
expands the nonlinear mixed effects model as a first-
order Taylor series approximation about η=0 and then 

estimates the model parameters on the linear 
approximation to the nonlinear model. FOCE on the 
other hand is a first order approximation of the 
nonlinear mixed effects model around the posterior 
mode of η. Since FOCE depends on a conditional 
estimate of η, the method is referred as conditional 
estimation algorithm. 

2.2.3 Precision of parameter estimates and 
confidence intervals 

The aim of a population pharmacokinetic analysis is to 
estimate the population parameters and associated 
variance components. Additionally the precision of 
these estimates, i.e. standard errors are sought as small 
standard errors are indicative of good parameter 
estimation. Estimation of the standard errors of the 
model parameters is usually based on standard 
maximum likelihood theory assuming the number of 
individuals used in the estimation is large and the 
random effects and residual errors are normally 
distributed, i.e. the standard errors are asymptotically 
normally distributed. In NONMEM, the default 
covariance matrix is a function of the Hessian and the 
cross-product gradient of the -2 log-likelihood (-2LL) 
function. The standard errors are computed as the 
square root of the diagonals of this matrix. An 
approximate asymptotic confidence interval can then 
be generated using a standard normal distribution 
(large sample) approximation. A number of problems 
are noted with this approach. Consequently, in most 
cases the resulting estimates of the standard errors can 
only be used qualitatively. 

Alternative methods to estimate standard errors are the 
nonparametric bootstrap method and the likelihood 
profiling. The Bootstrap [5] is a general method for 
measuring statistical accuracy and precision. Briefly, 
it involves creating ‘‘new’’ data sets by sampling with 
replacement from the original data and applying the 
same analysis steps to each of the new data sets as was 
performed on the original data. The results from the 
new data sets form distributions, which reflect the 
uncertainty in the original analysis. These 
distributions can be used to assess covariate selection 
stability [6], uncertainty of parameter estimates [7] 
and to correct for certain types of bias [8]. The 
resampling is performed with replacement on 
statistically independent parts of the data, which in 
population pharmacokinetics usually corresponds to 
individuals. Depending on what the statistic of interest 
is, different numbers of resampled data sets are 
needed. Bias correction of parameter estimates 
typically needs 50 bootstrap data sets, whereas 
estimation of standard errors requires 200. To 
calculate 95% confidence intervals approximately 
2000 bootstrap data sets is required. 

Log-likelihood profiling is one alternative method 
where no assumption regarding symmetry of the 
interval has to be made [9,10]. Fixing a parameter to 
values close to the estimate obtained from a maximum 



likelihood procedure (as the one implemented in 
NONMEM) and refitting this reduced model generates 
a likelihood profile. Often, as is the case in 
NONMEM, minus two times the natural logarithm of 
the likelihood is used and the maximum likelihood 
then corresponds to the minimum of this quantity. If a 
parameter is fixed, this model can be regarded as an 
alternative, competing with the full non-fixed model 
in being the most appropriate for describing the data at 
hand. The rival models are nested and the difference 
in the log-likelihoods of the data for the two models is 
approximately χ2-distributed. At p=0.05, a statistically 
significantly improvement is achieved when the log-
likelihood difference is 3.84. 

3 Advantages of the population 
pharmacokinetic modeling approach 
There are many advantages of population 
pharmacokinetics compared with the traditional 
approach to studying pharmacokinetics. Unlike the 
traditional studies in which subjects are sampled 
intensively, the population approach to evaluating the 
pharmacokinetics of a drug allows both sparsely and 
intensively sampled data to be used. Population 
pharmacokinetics enables the execution of 
pharmacokinetic investigations in special populations 
such as neonates and critical care patients where the 
number of samples to be obtained per subject is 
limited because of ethical and medical concerns. 
During drug development, relatively few samples can 
be obtained from patients participating in Phase II and 
III studies for the determination of the 
pharmacokinetics of a drug in the relevant population 
and for the determination of the relationship between 
dose, exposure, and efficacy/safety. Additionally, this 
approach yields better estimates of interindividual 
variability than traditional approaches that yield 
positively biased estimates [2]. A combination of 
accurate and precise estimates of interindividual 
variability and the mean parameter value for a drug is 
useful for selecting an initial dose strategy for drug 
therapy in a patient, and allows Bayesian feedback 
analysis to be performed for dosage individualization. 
Additionally, the analyses of sparse samples collected 
for population pharmacokinetic analysis have been 
reported to be cost-effective [2]. The population 
pharmacokinetic approach also allows one to combine 
heterogenous types of data from varying sources. For 
example, one could pool data from several different 
trials, study centers, variable biomatrices (plasma and 
serum), intense plus sparsely sampled populations, or 
experimental plus observational data. The combining 
of differing data sets often increases power to identify 
multi-compartment or nonlinear models, incorporate 
additional covariates, or gain precision in the 
estimation of the model. 

4 Clinical application to therapeutic 
drug monitoring in epilepsy 
Therapeutic drug monitoring (TDM) is the 
measurement and clinical use of drug concentrations 
in the body fluids, i.e. plasma or serum, to adjust drug 
dosage and schedule to each patient’s individual 
therapeutic requirements. It has been successfully 
implemented in the therapy of various diseases, 
among them epilepsy was one of the first to benefit of 
it. The management of epilepsy on clinical grounds 
only, can be problematic. The main reasons for this 
are that: i) antiepileptic drug (AED) treatment is 
prophylactic and seizures occur at irregular intervals, 
consequently it is difficult to determine whether the 
administered dose is sufficient for long-term seizure 
control; ii) clinical symptoms and signs of toxicity 
may be subtle, or difficult to differentiate from the 
manifestation of underlying disorder; and iii) there are 
no direct laboratory markers for clinical efficacy or for 
the manifestation of most common AED toxicity or 
adverse CNS effects. 

The basic ground for implementing TDM in epilepsy 
is the assumption that drug concentration rather than 
drug dosage are better correlated with clinical effects. 
Although, the indications for TDM usefulness in the 
management of epilepsy are similar for all AEDs, the 
TDM is likely to be of particular value for the drugs 
that exhibit pronounced variability in 
pharmacokinetics due to drug-drug interactions, and 
for AEDs with established relationship between drug 
concentration and therapeutic or toxic effects, narrow 
reference range, reversible action without 
development of tolerance, and with activity per se not 
through metabolites, unless these are measured.  

Carbamazepine (CBZ) is one of the oldest AEDs and 
still the drug of choice for treatment of simple or 
complex partial and generalized tonic-clonic seizures. 
CBZ absorption is relatively slow, variable and 
formulation dependent. Bioavalability is assumed to 
be 75 - 85% and apparent volume of distribution (V/F) 
after peroral administration varies from 0.2 to 2 L/kg. 
CBZ undergoes extensive metabolism, with major 
pathway involving cytochrome P450 (CYP) 3A4, to 
equipotent carbamazepine-10-11 epoxide. CBZ 
induces many enzyme systems including CYP 1A2, 
2C and 3A and glucuronosyltransferase. 
Consequently, it increases the metabolism of many 
drugs, including its own. Additionally, a number of 
AEDs or non-AEDs may induce or inhibit CBZ 
metabolism during polytherapy.  

Valproic acid (VPA) has wide anticonvulsive effects 
used in treatment of partial and generalized forms of 
epilepsy. VPA is almost completely absorbed from 
gastrointestinal tract, highly bound to plasma albumin 
and shows dose-dependent kinetics at high doses. 
Apparent volume of distribution (V/F) is 0.1-0.5 L/kg. 
VPA is primarily eliminated via hepatic metabolism 
mainly by conjugation with glucuronic acid, β-



oxidation and ω-oxidation. It undergoes metabolism 
via glucuronidation or CYP 2C9, 2C19, and 2A6 
izoenzymes, therefore its metabolism can be altered 
by other drugs. Drugs which interact with VPA 
include both, AEDs such as CBZ, phenobarbital, 
topiramate, and lamotrigine, as well as non-AEDs. 

Topiramate (TPR) belongs to the second generation of 
AEDs and has been approved for treatment of adults 
and children with different kinds of epilepsy either as 
mono or as adjunctive therapy. Following oral 
administration of TPR, absorption is rapid and almost 
complete with bioavailability ranging from 81 to 95%. 
In the dose range from 100 to 1200 mg/day the mean 
V/F is between 0.6 and 1.0 L/kg. Over 80% of TPR is 
eliminated via the kidneys, predominantly as 
unchanged drug. To date, six trace metabolites formed 
by glucuronidation, hydroxylation and hydrolysis have 
been identified in humans. The most important drug-
drug interactions occur with hepatic-enzyme-inducing 
AEDs, i.e. CBZ and VPA, which decrease TPR 
plasma concentrations by 40 and 17%, respectively. 

Clinical experience has demonstrated that 
individualized dose adjustment by the aid of TDM can 
significantly improve treatment with AEDs. 
Development of a population pharmacokinetic model 
is a logical extension of TDM, because it allows 
estimation of individual patients’ pharmacokinetic 
parameters based on sparse concentration 
measurements and ultimately effective control of 
dosing. In addition to being a valuable tool in 
designing a safe and effective dosing regimen for 
patients with epilepsy, population pharmacokinetic 
models permit evaluation of various factors that can 
influence PK characteristics. 

The subsequent sections of this paper present the 
summaries of our population pharmacokinetic studies 
with carbamazepine [11], valproic acid [12] and 
topiramate [13] aiming to evaluate the influences of 
various demographic and biochemical factors, and 
concomitant drug treatment on pharmacokinetics. 

4.1 Modeling methods 

Pharmacokinetic analysis of the population data was 
performed using NONMEM software package. The 
structural model used to fit the concentration-time data 
was a one-compartment model with first-order 
absorption and elimination as implemented in 
ADVAN2/TRANS2 PREDPP subroutine. In most 
cases only one or in some cases two drug blood 
concentrations per patient were determined. With such 
sparse data there are many problems with parameter 
estimation. The estimates are commonly biased and 
their precision is low, especially when all parameters 
are estimated. However, the average steady-state drug 
concentration depends on apparent oral clearance 
(CL/F), which is usually adequately predicted. In the 
present studies, estimation of V/F and absorption rate 
constant (ka) was not possible. Therefore, V/F and ka 

had to be fixed to a literature value. ka was estimated 
using the following relationship: tmax=ln(ka/ke)/(ka-ke), 
based on a literature value of elimination rate constant 
(ke), and tmax. In the first stage of model building the 
base model was derived. To describe interindividual 
variability of CL/F (ω2

CL/F) exponential model was 
used, while an additive, proportional, and combination 
error models were tested for residual variability of 
drug concentration (σ2). The model appropriateness 
was evaluated by standard diagnostic plots. Additional 
criteria were convergence of minimization, number of 
significant digits more than 3, successful covariance 
step and gradients in the final iteration in the range 
between 10-3 and 102. Alternative models were 
compared by the likelihood ratio test. Criterion for 
selection of a model was a change in minimum value 
of objective function -2LL (ΔOFV), of at least 3.84 
per one additional parameter, corresponding to p < 
0.05. In the following step, covariate model was 
developed using a forward inclusion method. 
Continuous covariates including patients’ weight 
(WT), body surface area (BSA), age, and daily dose of 
the investigated drug and co-treated drugs were 
included into the base model using a linear and power 
relationship in a mean centered manner. Among the 
categorical covariates tested were patients’ sex, effect 
of tobacco smoking (TOB) and concomitant 
medications. Effect of each covariate was tested 
against the base model. Significant covariates 
according to the likelihood ratio test were rank-
ordered and one by one introduced into the full model. 
The final model was determined by testing each 
covariate against the full model using a likelihood 
ratio test to see if it should remain in the model. 
Additional criterion for the retention of a covariate in 
the model was reduction in the unexplained 
interindividual variability and improvement in the 
precision of the parameter estimates. In each step of 
the model building process, improvement of the model 
was assessed by the goodness-of-fit plots, including 
the agreement between the observed and predicted 
plasma concentrations, reduction in the range of 
conditional weighted residuals, and uniformity of the 
distribution of the conditional weighted residuals vs. 
the predicted concentrations. A bootstrap sampling 
method with replacement was applied to calculate 
95% confidence intervals of the final model parameter 
values. 

4.2 Carbamazepine 

The CBZ study data from 311 patients were 
systematically explored and the influence of various 
covariates on CBZ pharmacokinetics using population 
approach was evaluated [11]. Univariate analysis of 
covariate relationships performed by forward 
inclusion into the base model revealed that TOB, sex, 
co-therapy with lamotrigine (LTG) and 
benzodiazepines (BDZ) have no effect on CL/F of 
CBZ. On the other hand, inclusion of WT, age, CBZ 
dose (DCBZ), phenobarbitone dose (DPB), VPA dose 



(DVPA) and CBZ tablet formulation significantly 
improved OFV and reduced unexplained 
interindividual variability. Furthermore, the 
relationship between CL/F and WT, AGE and DCBZ 
was best described by the power model, while the 
relationship with DPB was linear rather than power. In 
addition, incorporating DVPA in both a linear and a 
power manner did not significantly improve the data 
fitting, but as indicated by the plots of post-hoc 
Bayesian estimates, CL/F was significantly higher, if 
DVPA was greater than 750 mg/day. In the backward 
elimination step the influence of age on CL/F was 
removed. Parameters of the final model are presented 
in Table 1. 

Tab. 3 Estimates of the final population 
pharmacokinetic model of carbamazepine. DCBZ 

carbamazepine dose; DPB phenobarbitone dose; WT 
weight; VPA valproic acid 

Parameter Estimated 
value 

95% 
Confidence 

interval 
θCL 5.35 4.95 - 5.75 
θCL,DCBZ 0.591 0.499 - 0.683 
θCL,DPB 0.414 0.238 - 0.590 
θCL,WT 0.564 0.362 - 0.766 
θCL,VPA 1.18 1.03 - 1.33 

ωCL/F [CV%] 36.5 31.6 - 40.7 

σ [μg/mL] 1.18 0.98 - 1.36 
 

The final model is described by the following 
equation, Eq. (11) 
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where VPA is 1 if DVPA>750 mg or 0 otherwise. 
Final model revealed positive correlation between 
DCBZ and CL/F (Figure 1). The relationship was 
nonlinear and of utmost importance in adjusting CBZ 
dose in the post-induction phase. Possible 
explanations for the effect of dose on CL/F have 
included decreased CBZ bioavailability and increased 
clearance due to autoinduction of metabolism at 
higher CBZ doses, and TDM effect. To our 
knowledge this is the only study in which the 
influence of DPB on CBZ CL/F was investigated, in 
contrast to previous population pharmacokinetic 
studies where co-therapy with PB was considered only 
as a categorical covariate. Due to PB induced CBZ 
metabolism an increase in CBZ CL/F in the range 
from 16 to 44% is reported. According to the results 

of our study the relationship between CBZ CL/F and 
DPB is linear. Based on the results of the final 
population model an increase in CBZ CL/F by 30% in 
concomitant therapy with PB 100 mg daily and 44% 
with 150 mg daily is estimated for a patient with an 
average WT of 70 kg. However, in view of the fact 
that the main CBZ metabolite CBZE contributes to 
both the therapeutic and toxic effects of the drug, its 
concentration should have been monitored in order to 
evaluate clinical importance of this drug-drug 
interaction. As reported in other studies VPA 
increases CL/F of CBZ by 7 to 23%. In our study 
CL/F of CBZ was 18% higher in patients co-treated 
with VPA, if DVPA was greater than 750 mg/day. 
Since total (bound + free) drug concentration was 
measured in our study and due to the fact that VPA is 
highly bound to plasma proteins, this slight increase in 
CBZ CL/F may be caused by displacement from 
plasma proteins. 

 
Fig. 1 Relationship between individual estimates of 

carbamazepine peroral clearance and daily dose 

4.3 Valproic acid 

The study evaluated VPA CL/F from 153 patients 
with diagnosed epilepsy receiving VPA either as 
mono antiepileptic therapy or in combination with 
other AEDs [12]. Interindividual variability of CL/F 
was evaluated by an exponential model, while residual 
variability in VPA concentrations was most 
adequately described by a combination error model 
comprising proportional and additive component. 
Analysis of the plots of Bayesian estimates of 
individual patient’s CL/F versus various covariates 
indicated a step-like increase of VPA CL/F with 
DVPA greater than 1000 mg/day, while CL/F 
continuously increased with patients’ WT. Moreover, 
CL/F in patients co-treated with TPR was lower 
compared to the group of patients on monotherapy 
with VPA and combination therapy with other AEDs. 
The univariate analysis of covariate relationships 
revealed that inclusion of DVPA greater than 1000 
mg/day into the base model, resulted in the highest 
decrease in OFV of 16.809 (p < 0.0001). Additionally, 
the influences of patients’ WT (ΔOFV=9.945, p = 



0.002) and co-treatment with TPR (ΔOFV=4.784, p = 
0.029) were found significant and were introduced 
into the full model. In the backward elimination step 
no covariate was removed from the full model. The 
final population model parameter estimates are 
presented in Table 2. 

Tab. 2 Parameters estimates of the final population 
pharmacokinetic model of valproic acid in patients 

with epilepsy 

Parameter Estimated 
value 

95% 
Confidence 

interval 
θCL 0.517 0.470 - 0.568 
θCL,WT 0.556 0.176 - 0.885 
θCL,VPA 1.43 1.24 - 1.63 
θCL,TPR 0.765 0.617 - 0.994 
ωCL/F [CV%] 31.9 22.4 - 37.9 
σa [mg/L] 13.2 3.17 - 18.8 
σp [%] 23.8 15.4 - 32.4 

 

The model is described by the following equation, Eq. 
(12) 
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where VPA is 1 if dose is greater than 1000 mg/day, 
or 0 otherwise, and TPR equals 1 in patients co-treated 
with TPR, or 0 if not. VPA CL/F positively correlated 
with patient’s WT, with the exponent (95% Cl) of 
0.556 (0.176 - 0.885). The increase of CL/F with 
DVPA greater than 1000 mg/day is in accordance with 
the results of other studies investigating the effect of 
DVPA on CL/F. Adjunctive therapy with TPR or LTG 
is common in patients who do not respond to mono 
therapy with VPA, and there is uncertainty about the 
effect of TPR or LTG on VPA CL/F. Co-therapy with 
TPR was included in the final population model, 
showing 23% (0.6-38.3%) decrease in VPA CL/F in 
patients co-treated with TPR. Results of the studies 
investigating VPA interaction with TPR are 
inconsistent as in some studies an increase in VPA 
CL/F was observed with TPR co-treatment. This can 
be explained with the multiple effects of TPR on 
metabolic pathways of VPA. Namely, formation 
clearance of VPA glucuronide was found to decrease 
by 35%, while β-oxidation was found to increase by 
42%, during co-treatment with TPR. No influence of 
co-treatment with LTG, BZD, CBZ and PB on VPA 
CL/F was detected, although a trend of 14.9 and 6.9% 
decrease in VPA concentrations in patients 
concomitantly treated with CBZ and PB, respectively, 
was observed in comparison to patients on mono 
therapy. 

4.4 Topiramate 

As the number of patients included in this study [13] 
was relatively low – 26, ka was fixed which enabled 
other parameters (CL/F, V/F) to be adequately 
estimated. Interindividual variability of CL/F was 
modeled with an exponential model, while residual 
intraindividual variability of topiramate concentration 
was most adequately described by the additive error 
model. Analysis of the plots of Bayesian estimates of 
individual patient’s CL/F obtained with the base 
model versus various covariates indicated an increase 
of CL/F with patient age. Additionally, mean 
topiramate CL/F in patients not co-treated with 
enzyme inducing AEDs (1.61 L/h) was lower 
compared to patients co-treated with CBZ (2.08 L/h), 
while in one patient co-treated with phenobarbital 
CL/F was 1.06 L/h.  

Inclusion of the influence of age on CL/F into the base 
model decreased OFV by 4.823 (p = 0.028) and 
reduced unexplained interindividual variability of 
CL/F to 44.3%. Additionally, the influence of co-
treatment with CBZ (ΔOFV = -5.930, p = 0.015) on 
topiramate CL/F was found significant and was 
introduced into the full model. Since the mean age of 
patients co-treated with CBZ was lower, we presume 
that the effect of CBZ co-treatment on topiramate 
CL/F was confounded with the patients’ age when 
tested against the base model. 

Tab. 3 Estimates of the final population 
pharmacokinetic model of topiramate 

Parameter Estimated 
Value 

a95% 
Confidence 

interval 
θCL/F 1.47 1.18-1.86 
θCL/F, Age 0.421 0.177-0.755 
θCL/F, CBZ 1.70 1.31-2.23 
θV/F 0.518 0.419-0.633 
ωCL/F [CV%] 39.2 22.5-49.1 
σ [%] 13.8 8.7-18.0 

a2.5 and 97.5 percentile of the parameter estimates 
over 1000 bootstrap samples 

In the backward elimination step no covariate effect 
was removed from the full model. The final model is 
described by the following equations, Eq. (13) 
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where CBZ is 1 in patients co-treated with 
carbamazepine, or 0 otherwise. Parameters of the final 
model are presented in Table 3. 

Under the conditions of our study topiramate CL/F 
was found to increase with patient’s age and co-
therapy with carbamazepine (Figure 2).  
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Fig. 2 Relationship between individual estimates of 
topiramate clearance, patient’s age and co-treatment 

with carbamazepine (CBZ) 

Topiramate oral clearance was 70% higher in patients 
co-treated with carbamazepine compared to patients 
on topiramate monotherapy. Previous studies 
demonstrate that co-treatment with enzyme-inducing 
AEDs (carbamazepine, phenytoin, phenobarbital, 
primidone) enhances hepatic metabolism of 
topiramate. Enzyme induction by CBZ is associated 
with an approximately 2 to 3-fold increase in 
topiramate oral clearance, mostly due to an elevation 
in metabolic clearance. In contrast to CBZ, BZD, 
VPA and risperidone co-therapy did not exert a 
significant influence on topiramate pharmacokinetics. 
Although relationship between plasma topiramate 
concentrations and occurrence of adverse events 
related to CNS was demonstrated previously, in the 
present study only incidence of headache was 
associated with the average steady-state plasma 
concentration of topiramate. Lower plasma 
concentration of topiramate was observed in patients 
experiencing headaches compared to patients absent 
from this adverse event. This could be attributed to the 
antimigraine action of topiramate. On the other hand, 
somnolence, ataxia, tremor, speech disorders and 
fatigue were associated with adjunctive therapy with 
carbamazepine, valproic acid, benzodiazepines, and 
risperidone. 

4.4 Conclusion 

The population pharmacokinetic models developed in 
these studies can be used for Bayesian estimation of 
pharmacokinetic parameters in individual patients 
based on sparse concentration measurements and for 
selection of optimum dosing regimen in routine 
patient care. 
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