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Abstract  

Simulations serve to experiment with a model to explore system behaviour and 

to test and/or design suitable control methods. Simulation model must be correct 

and supported with accurate input data to achieve these desired goals.  

Input data on transportation system represent a substantial part of the simulation 

model. The input data are unique for each simulated project and that is why an 

efficient acquisition of input data is an important task. The paper deals with data 

acquisition methods based on pattern recognition supposed to be suitable for 

these needs.  

The infrastructure data can be acquired from drawn plans and maps or from 

images. Even if infrastructure might be already available, rarely are complete 

with all necessary attributes for microsimulation models. Such attributes can be 

recognised and added to available data sets.  

Data on vehicles and transportation flows can be extracted from video sequences 

of real traffic. Processing of video data seems to be the only effective method to 

get detailed information on vehicle behaviour in a transportation flow.  

Acquisition of input data by pattern recognition methods may deliver complete 

data for microsimulation models quick and easy.  
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1 Introduction  

Transportation systems are usually widespread 

systems, which may include different transportation 

modes and may be a part of logistics and production 

chains. Microscopic models of a transportation system 

must respect to a certain degree special characteristics 

of a transportation mode but all the models have 

similar structure consisting of infrastructure 

(network), transportation flows and control subsystem. 

Design and optimisation of the control subsystem 

should frequently result from simulation experiments 

and so the main interest in creating a model will be 

paid to infrastructure and vehicles (transportation 

flows). Let us shortly discuss used data and desired 

data characteristics. 

The infrastructure (transportation network) consists of 

nodes and edges of the network. Model of 

transportation infrastructure defines vehicle trajectory 

(its kinematics and dynamic characteristics) and that is 

why some input attributes are vital for further 

simulation experiments.  

At first, infrastructure model must define accurate and 

unambiguous position of nodes and correct network 

topology. The unambiguous positioning of nodes is 

not specially treated in general automatic pattern 

recognition systems, so it is one of problems to be 

solved.  

Secondly, vehicle kinematics and dynamics depend on 

road geometry and that is why an accurate edge shape 

must be estimated. Many models define infrastructure 

links as a polyline or a spline, which is comfortable 

for data storage and visualisation but unsuitable for 

vehicle dynamics estimation. Edge curvatures must be 

known for calculation of centrifugal acceleration and 

thus define physical speed limits for vehicles.  

Finally, a bare medial axis of an edge is not sufficient 

for real traffic simulation but a road division to traffic 

lanes and other traffic signs and regulations must be 

known. So the last problem is a correct estimation of 

edge attributes such as shape and lane distribution.  

For the mentioned reasons, the infrastructure data for 

microsimulation models must include three major 

types of attributes, namely: 

- an accurate and unambiguous  position of 

nodes, 

- an accurate edge shape (as a smooth curve 

consisting of straight and curved sections),   

- an accurate description of traffic lanes on 

edges (roads) and in nodes (junctions) of a 

network. 

Some of these attributes may be automatically 

estimated at the infrastructure recognition process 

some must be input manually using a dedicated editor. 

Vehicle characteristics can be estimated from video 

sequences of real traffic. Video cameras are already 

widely used for traffic survey and vehicle counting 

and so only proper data processing is necessary to 

yield the desired vehicle characteristics. The data 

loaded in a microscopic simulation model must 

correspond to vehicle behaviour in real traffic. It 

means that these data does not describe only technical 

characteristics of a vehicle but they must represent 

behaviour of a vehicle together with a driver as one 

compound unit.  

Dynamic vehicle characteristics depend on its 

construction and define speed limit, acceleration and 

deceleration rates of the vehicle. Several types of 

dynamic vehicle characteristics for microsimulation 

models can be found in technical specifications for 

vehicles of a typical fleet proper to a certain country 

or region. The differences in vehicle fleet composition 

between various countries become less important with 

a growth of global markets. Even so, a certain 

difference exists due to different standards of living in 

these countries.  

A more important difference can be observed in 

driver’s behaviour, which depends strongly on local 

tradition and driving style. Quite different behaviour 

can be expected in Norway, in Italy and in a Middle 

East country. That is why characteristics of vehicle’s 

behaviour cannot be freely imported from one general 

source but must be estimated for each individual 

project and for traffic situation in a regional 

environment. Traffic analysis from realistic video 

sequences seems to be the only efficient tool to 

acquire these input data. The traffic analysis is a 

complex task which includes many problems of 

projection geometry, pattern recognition and object 

classification.  

2 Recognition of infrastructure  

Recognition of transportation infrastructure can be 

used whenever digital data are not readily available.  

Data availability means that data are suitable for a 

simulation model i.e.  they are: 

- freely accessible (as a commercial product),  

- with sufficient accuracy, 

- complete with all necessary attributes, 

- for acceptable costs. 

Otherwise an infrastructure recognition system may 

help to acquire the data from scratch or to add 

necessary attributes into incomplete data sets.  

The recognition system processes input data according 

to a generally used scheme composed of following 

basic steps:  

- image segmentation,  

- pre-processing (morphological operations),  

- thinning and  

- vectorisation (post-processing)  

to yield desired vector data.  



The first three steps are generally known and so the 

appropriate algorithms only have to be carefully 

implemented to prepare correct data for vectorisation. 

The last step (vectorisation) must recognise final 

infrastructure with precisely defined and positioned 

nodes and accurate definition of edge shapes. A 

definition of road lanes is currently performed 

manually with a major help of infrastructure editor. 

Let us discuss individual steps of the recognition 

process. 

Segmentation 

Analysed image of a transportation infrastructure 

contains data of interest (infrastructure data) and some 

background information. Segmentation step separates 

infrastructure data so that resulting binary image 

represents infrastructure as black pixels and all other 

background objects as white pixels. 

Infrastructure data can be separated using a decision 

rule, which can be for example a threshold function 

defined as follows:  
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where g(x,y) is the value of a pixel with coordinates x, 

y in a resulting binary image and f (x,y) is the original 

value of that pixel. T is a threshold value. 

More elaborated rules use several thresholds to 

separate correctly objects in the image. There are 

many local and global threshold techniques, but a 

fully automatic threshold set up method for various 

drawn maps can be hardly found [6]. 

Pre-processing 

The binary image is processed in pre-processing step 

to remove imperfections and to amplify desired 

features of line objects. Accurate pre-processing 

removes isolated small objects, reduces boundary 

noise, fills small holes in objects and joins 

disconnected objects. Binary morphology operators 

opening and closing provide very good results for this 

kind of tasks. Operations opening and closing can be 

combined to remove all mentioned imperfections [7] 

(of course to a certain degree only). 

Fig. 1 illustrates a difference between desired and 

acquired results after thinning step. Careful pre-

processing helps to receive results close to desired 

ones.  

Thinning 

The aim of this step is to create skeleton one pixel 

thick while connectivity, shape and position of the 

junction points should be preserved. Further, skeleton 

links should lie in the middle of a shape (medial axis), 

skeleton should be immune to noise and excessive 

erosion should be prevented (length of lines and 

curves preserved).  

Thinning algorithms remove outer pixels of a motif 

layer by layer to produce one pixel thick skeleton. The 

thinning shows good results for objects of 

transportation infrastructure (roads), the length of 

which is much larger than their thickness. The 

resulting skeleton represents infrastructure as a set of 

raster points (a binary bitmap file), which must be 

further processed to yield a vector representation.  

Fig.1 Input image, desired and acquired skeleton 

The nature of thinning algorithms can be parallel or 

sequential. Parallel thinning algorithms make their 

decisions on deleting pixels using a bitmap from the 

previous iteration, while sequential algorithms use an 

actual bitmap.  

Raster-to-vector conversion 

Vectorization step converts raster data of a skeleton to 

vectors representing infrastructure. Topology and 

shape of roads must be preserved. Topology 

preservation means that junction points and their 

positions are accurately estimated and skeleton 

connectivity is retained otherwise false additional 

junction points would be created. Shape preservation 

includes mediality, prevention of excessive erosion 

and immunity to noise. 

The topology and shape preservation constitutes the 

most serious problems, which are rarely solved 

accurately enough. A new method based on 

recognition of node candidate clusters has been 

proposed in [9]. A priority number is calculated for 

every pixel of the cluster based on the number of 8-

neighbors (N8) candidates and the number of 4-

neighbors (N4) candidates. Candidate pixel with the 

largest priority is then selected for a node. Position of 

nodes in the skeleton is accurately recognised by this 

method. The difference of local and cluster approach 

is shown in Fig.2. 
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Fig.2   Local approach (B) and cluster approach (C) 

Post-processing 

The raster-to-vector conversion delivers a set of 

elementary vectors (as shown in Fig. 2). Even a 

straight line contains many unnecessary points, which 

should be eliminated. A polynomial approximation 

can be used to find straight and curved sections of 

edges and such approximated links can be then used to 

estimate accurate position of a node. Recognition of 

straight lines and arcs is discussed in [8] for example. 

Additional post-processing of vector data may include 

pruning, connecting incorrectly separated objects, 

improving accuracy of junction points positioning and 

recognition of further attributes of infrastructure links 

such as length, width or type (colour). 

Polynomial approximation  

The approximation of infrastructure links is a decisive 

step to ensure quality of final results. As mentioned, 

the recognition of infrastructure links supposes that 

only straight sections and circular arcs may create a 

link. So the recognition algorithm is limited to these 

two types of geometry elements.  

Two basic approaches were tried to find individual 

sections and estimate their attributes:  

- inverse interpolation, 

- approximation using least squares method. 

Although the problem seems to be easy to solve, an 

accurate estimation of individual sections is hard to 

attain even for input data of perfect quality (artificially 

generated). The algorithm works as follows: 

Step 0: Set counter I=0 

Step 1: From positions of the first 3 points after 

counter I estimate expected attributes of the next 

geometrical element. Set I = I+2  

Step 2: Increase the counter and check the point at a 

position I. If it belongs to a recognised element then 

refine the element attributes using position of the new 

point and continue repeating Step 2. Otherwise 

continue at Step 3.   

Step 3: Set index of the final point of the created 

element to K=I and search for the optimal value of K 

so that the element fits the input points the best way.  

Step 4: Set counter I=K and if there are some 

remaining points continue at Step 1 otherwise End. 

The approximation of roads should be a smooth line, 

which means that the line and its first-order derivative 

are continuous as shown in Fig. 3. 

Fig.3   Approximation of road sections 

The approximation step recognises individual sections 

of the line. Resulting infrastructure consists of smooth 

lines, curvature in curved sections is well defined and 

accurate position of network nodes can be estimated 

as an intersection of approximated lines. 

3 Estimation of vehicle characteristics  

An analysis of video sequences for estimation of 

vehicle characteristics follows a very similar scheme 

of data processing as in infrastructure recognition 

system. A video sequence is divided into individual 

frames at first. The individual frames are then pre-

processed, moving objects are recognised, classified 

and finally characteristics of individual vehicles can 

be estimated. Data of individual vehicles at the same 

traffic situation can be then statistically evaluated and 

probability distributions of velocity and acceleration 

can be used to generate vehicles with randomised 

attributes in a simulation model.  

Vehicle is a mobile object in a transportation system. 

The traffic surveillance or any video registering 

provides information on mobile objects as units 
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consisting of a vehicle and a driver. Only behaviour of 

such composite units can be recognized in traffic, 

which is quite relevant for simulation projects [5].  

The acquisition of vehicle characteristics from a video 

sequence consists of registering video sequence of 

actual traffic, recognition of vehicles (moving 

objects), estimation of vehicle positions in the real 

world co-ordinates (scene geometry), derivation of 

vehicle characteristics and statistical evaluation.   

Vehicle position  

Traffic characteristics can be recognised with a fixed 

camera position and also scene background can be 

assumed fixed (not changing in time). This allows to 

find moving objects by subtracting background 

information from an actual image. Generally, any 

method can be used to find moving objects usually 

comparing individual video frames against a 

background image or against successive frames. 

Frequently used methods are background subtraction, 

temporal differencing (differences between two 

successive frames) or optical flow. These methods can 

be programmed in proper applications or specialized 

cameras can offer a pre-processed output with 

recognition of moving objects.  

The information on moving objects is further analysed 

to estimate vehicle position and other characteristics 

like speed and/or acceleration. Vehicles are 3- 

dimensional objects and move in a 3-dimensional 

space while video data can provide only 2-

dimensional pictures so the real world co-ordinates 

have to be estimated [2]. Vehicles move on a road or 

(roughly speaking) in a linear co-ordinate system and 

so speed or acceleration must be estimated in the 

actual direction of the road.  

Fig. 4 Vehicle 3D world co-ordinates vs. projection 

2D co-ordinates  

The problem of a discrepancy between a real word 

space and video image is illustrated in Fig.4. Let us 

denote world co-ordinates (x, y, z) and co-ordinates of 

video recording frames (u,v). The camera delivers a 

perspective projection defined by a projection matrix 

M, so that projection co-ordinates (u,v) can be 

estimated from world co-ordinates (x,y,z) using 

transformation formula 

 (u, v, h)  (x, y, z, h) * M3,4 

where (u, v, h) and (x, y, z, h) denote homogenous co-

ordinates (completed by scaling factor h). The 

opposite calculation symbolically denoted as   

(x, y, z, h)  (u, v, h) *  

cannot be done as M is not a square matrix and so an 

inverse matrix does not exist. So some assumptions 

must be taken to allow world co-ordinates estimation. 

A simple assumption is that the scene lies in a plane. 

World co-ordinates in the scene can be then calculated 

supposing camera axis is defined by vector a and 

normal vector n defines the scene plane. Main goal of 

the recognition is to derive functions of velocity and 

acceleration against time or against vehicle position. 

The velocity is estimated from differences of vehicle’s 

positions and that is why absolute world coordinates 

and origin of the co-ordinate system are irrelevant. So 

origin of the camera co-ordinate system as well as 

origin of the world co-ordinate system can be placed 

on the camera axis.  

Let us now construct an auxiliary plane parallel to 

camera image plane (perpendicular to camera axis) at 

a point P where camera axis intersects the scene plane 

as illustrated in Fig.5. 

  

Fig. 5 Co-ordinates on auxiliary plane 

Distance from point P to a camera plane is marked zC . 

The centre of perspective projection F lies also on the 

camera axis at distance f. Co-ordinates xa, ya, za of 

points in the auxiliary plane can be estimated using 

simple relations:  

xa = u .k  

ya = v .k  

za = 0  

f

fz
k C 
  

The same formulas hold for co-ordinate differences 

dxa = du .k  

dya = dv .k  

and velocity can be calculated from a distance  
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These relations are valid for a bird’s eye view where 

camera is placed high over a horizontal scene. 
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Unfortunately, a real scene plane is situated in a 

general position defined by normal vector n with 

components nx, ny, nz as shown in Fig. 6. 

 Fig. 6 Projection on a general plane  

Relations between co-ordinates must be derived 

estimating intersections of projection rays with the 

scene plane. Point B is an intersection of ray r with 

projection plane. Vector b lies in the projection plane 

and is defined by a point P in the plane and point B. 

Supposing that P≡(0,0,0) is the origin of the co-

ordination system then b is a position vector of point 

B. Vectors n and b must be orthogonal and so 

following equation holds: 

n . b = 0            or  

n . B = 0             

Vector r is defined by focus F≡(0,0 zC+f ) and a point 

A≡ (u,v,zC) in the camera plane. Parametric equation 

for vector r is then    

 r = F + t.(A-F) 

Point B lies on the vector r so the equation of ray r 

may be substituted into condition for orthogonal 

vectors yielding a formula for estimation of t 
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Co-ordinations of projection point B can be estimated 

by substituting value of parameter t into equation of 

vector r. Distances for velocity estimation are then 

calculated from differences of all three co-ordinates in 

the world co-ordinate space 
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Scene calibration 

The scene plane normal vector has three components, 

which together with distances zC and f define the 

projection. A scene can be calibrated by estimating 

these parameters. The normal vector can be calculated 

from positions of 3 landmarks in a scene plane. World 

co-ordinates of the landmarks can be measured using a 

GPS system, which gives co-ordinates P1=(x1, y1, z1), 

P2=(x2, y2, z2) and P3=(x3, y3, z3). The normal vector 

can be estimated from equation 

)(*)(

)(*)(

1213

1213

PPPP

PPPP
n




  

Distance zC from the scene to the camera can be 

directly measured or calculated from world co-

ordinates of the camera. Distance f represents focus 

length of the camera position. So all projection 

parameters can be estimated and video recognition 

system is thus calibrated. 

Recognition of 3D vehicles  

Unfortunately, vehicles do not lie in the scene plane 

but they are 3D objects. So the assumption of objects 

positioned in the scene plane is not fulfilled. The 

systematic error arising from this fact should be 

analysed and corrected, if possible. This error depends 

on a camera position and there is no error for bird’s 

eye view. The lower is camera positioned the bigger 

error will arise. 

Basic reflection can use image of a car from Fig. 4. 

This image (a blob) can be framed in a polygon, 

which encompasses the whole vehicle. Further, a 

prism can be constructed, which encompasses the car 

in a real 3D space as shown at the right hand side of 

Fig.7. Projection of the prism centroid T coincides 

with median point of the frame. This is an important 

result as the centroid of a car may be taken as a 

reference point when evaluating motion of a car.  

Fig. 7 Projection on a 3D car  

Another approach might take the lowest point of the 

blob as a reference point. In this case finding of such a 

point is more difficult and the result is more sensitive 

to any imperfections in the image (position of such a 

reference point may change due to imperfections in 

the image much more than position of a median).  

4 Conclusions   

Presented recognition methods are partially 

implemented (especially methods for infrastructure 

recognition), theoretical analysis should serve for 

estimation of an attainable accuracy of results and/or 

elimination of systematic errors using suitable 

corrections.   

The recognition of infrastructure is sufficient for 

practical use, especially the accurate node positioning 

and recognition of road shapes are valuable results of 

our research. The only remaining problem, which has 

not been satisfactory solved yet, is removing of 

thinning artefacts. In some cases (like thick lines and 
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acute angles) the artefacts are created by thinning 

algorithms, which would alter topology of the 

resulting network. So even if the accurate 

vectorisation algorithm is used these inaccuracies can 

be transferred into a vector representation.  

The performance of the recognition algorithm was 

improved using original approach which processes 

just outline pixels. The approximation algorithm 

delivers straight and curved segments, which is 

desirable for microsimulation models. Traffic lanes 

organisation can be edited manually using a 

specialised editor together with road signs as used in 

real traffic. 

Automatic recognition of visual information about 

vehicles and traffic flows is based on theoretical 

reflections, which yielded basic formulas for 

calculation of world co-ordinates in 3D space, for 

calibration of the scene and camera. Further research 

supposes implementation of proposed methods and 

evaluation of different camera positions and arising 

errors. Finally, recommendations for scene choice and 

camera positioning will serve for proper organisation 

of traffic measurements in real traffic. 
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