
SIMULATION AND GENETIC EVOLUTION OF

SPIKING NEURAL NETWORKS

Petr Podhorský, Miroslav Skrbek

Czech Technical University in Prague, Faculty of Information Technology,

 Department of Computer Systems,

Computational Intelligence Group,

Kolejní 550/2, 160 00 Praha 6, Czech Republic

podhope1@fel.cvut.cz (Petr Podhorský)

Abstract

In this paper, an implementation of a simulator for spiking neural networks and

learning algorithm using genetic evolution is described. We have implemented

two neural models (simplified Spike Response Model and Integrate and Fire

model) and two learning algorithms – SpikeProp (its original version modifying

only weights and an enhancement for changing all network variables – weights,

delays, time constants and thresholds) and a simple genetic learning algorithm

(presented in this paper). This learning algorithm is easy to understand and does

not require any special network topology like feed-forward networks and back-

propagation algorithms or thorough investigation of network architecture. It is

based on an assumption that small changes in network variables have a small

impact on the output and big changes have a big impact, thus calculating a

difference between a desired output and a real output and mutating individuals

according to a size of this difference we can expect a population to converge.

We verified this approach on frequently used benchmarks.

Keywords: Eurosim, congress, spiking neural networks, genetics, evolution.

Presenting Author’s biography

Petr Podhorský is a Ph.D. student at Czech Technical University in

Prague, Faculty of Information Technology, Department of Computer

Systems. After getting his master degree in 2009, he has joined the

Computational Intelligence Group. His research focuses on spiking neural

networks.

1 Introduction

Spiking neural networks [5] are labeled as third

generation networks. A reason for this is a biological

more realistic model, where time factor is involved.

Simulation of spiking neural networks is more

complex than with classic neural networks due to a

higher count of network variables and more complex

timing. Because of a failure to find a proper simulator

for educational and experimental purposes, we

decided to create our own simulator for studying

spiking networks behavior and properties.

In this paper, we present our spiking neural network

simulator containing our genetic algorithm for

learning spiking networks involving an adaptive

mutation. The simulator supports simplified Spike

Response Model and Integrate-and-fire model.

Along the implementation of the simulator we

wondered if it is possible to solve the learning

problem for spiking neural networks with genetic

algorithms (instead of using some kind of back-

propagation technique). This was due to the fact that

we are convinced that genetic algorithms are more

powerful for problems with many variables than

gradient algorithms (like back-propagation).

Overview of spiking neural networks is in Section 2. It

describes neuron models as they were implemented in

the simulator.

Section 3 describes SpikeProp (back-propagation

based algorithm), which was used for comparison to

our genetic algorithm in presented experiments.

Section 4 describes our proposed genetic algorithm in

detail. The simulator which implements this algorithm

is presented in Section 5. Simulation results are

described in Section 6.

2 Spiking neural networks

A main difference between classic ANNs and SNNs is

that values are not carried directly along connections,

but by spikes propagated along synapses between

neurons. It allows an arbitrary spatiotemporal coding,

for example rate coding, linear temporal coding,

population coding, rank order coding etc.

There are several spiking neuron models differing in

complexity and a mathematical description. Models

we used in the simulator are SRM (Spike Response

Model) and Integrate-and-fire model.

2.1 Spike Response Model

SRM implemented in simulator describes an internal

potential of a neuron like:

 ∑ ∑

 (1)

First sum goes over all input synapses to the neuron,

second one stands for all spikes coming in across the

synapse. u(t) represents the neuron potential, ws a

weight of a synapse, t a current time and tp a time

when spike arrived to the neuron, s a time constant

for a particular synapse.

A simulation of a network with SRM model is made

in a clock-driven fashion, i.e. a network is simulated

in small time steps.

Fig. 1 Spike Response Model (an effect of a spike to a

neuron's potential)

Fig. 2 Integrate-and-fire model (an effect of a spike to

a neuron's potential)

These figures depict shapes for both models. A

concrete shape and values are related to constants, so

these figures are only illustrational.

2.2 Integrate-and-fire model

The model of spiking neuron is more complex than

SRM model. It can be simulated in an event-driven

fashion, thus it runs faster than clock-driven

simulations.

 (2)

Differential equation (2) describes the Integrate-and-

fire model [4]. V represents an internal neuron’s

potential, VRest a resting potential, J a synaptic current,

R a neuron’s resistance and τ a neuron’s time constant.

Different variable names than in SRM are used

because of a different literature source of this neuron

model.

The synaptic current J is calculated as a sum of

rectangular shaped pulses (with a synapse’s weight as

a height of this pulse).

0 1 2 3 4 5

5

10

15

20

25

30

35

3 SpikeProp

SpikeProp is a back-propagation learning mechanism

derived for spiking neural networks introduced in [1].

In classic ANNs, an error of the network is calculated

as a difference between an actual and a desired output.

For SNNs, back-propagation algorithm was derived

for first time spike coding (e.g. linear temporal

coding) and the error is calculated as a difference

between an actual and a desired output spike time.

∑

 (3)

In each iteration parameters (weights only or all

neuron’/synapses’ parameters) are modified by the

delta rule as follows:

 (4)

where ∆pi is a change of a i-th parameter, ηp is a

learning rate for specific parameter class and ∂E/∂pi is

a partial derivative of E by parameter pi.

SpikeProp iterates until the error falls below

predefined threshold, a maximum number of iterations

is reached or some neuron stops firing (in this case it

is not possible to calculate the error).

Because of nature spiking networks, some problems,

unseen in classical ANNs, can pop up – e.g. because

weights are being altered by difference between

output spike times and desired times, one cannot

compute this difference anymore, when neuron stops

firing.

4 Genetic learning algorithm

A genetic algorithm (GA) is a strong optimization

method. It involves similar processes known from

nature – evolution of a population, selection of best

individuals and their mutation or crossover. An

advantage of this approach is a lack of need to study a

concrete problem thoroughly – e.g. for a feed-forward

network, there is no need to study and to implement

some kind of a back-propagation technique.

The proposed genetic algorithm evolves a population

of individuals. Each individual is represented by one

spiking neural network (i.e. there is no conversion to

binary format whatsoever). In each iteration, worst

individuals which are removed from population are

replaced by mutated survivors. Generation of new

individuals is made by mutation of parameters, no

crossover is performed. Individuals are evaluated

according to an error of the network, calculated as

follows:

∑

 (5)

where E is the error, P is a set of patterns presented to

the network (e.g. 4 patterns for the XOR problem),

is a real network output and
 is a desired output.

A key assumption for our algorithm is that it’s more

plausible to make greater changes to individuals that

are farther from the ideal solution – a random value

from range [-0.5;0.5] is multiplied by an error of the

individual and some constant specific to the

parameter. These constants were empirically set based

by a few experiments (if the constant is a zero, the

parameter remains unchanged, if it is too high, only

bad individuals are produced, a good value is

somewhere inside this interval). Constants used were

10
5
 for weights, 10

2
 for delays, 10 for time constants

and 10
2
 for neurons’ thresholds.

A following equation represents an operation for each

parameter (p) for each individual in the population. A

rnd function generates a random number in the

interval 0 and 1 and Pp represents a probability that the

parameter will be mutated.

 {

 (6)

A fitness value can be expressed as a negative error,

so an individual with the best fitness will have a zero

error value.

A pseudo-code illustrating how the implemented

genetic algorithm works follows.

1. Initialize initial population

2. Calculate fitness values for all individuals

3. Remove N worst individuals

4. Generate N new individuals by duplicating and

mutating survivors

5. Calculate fitness values for all individuals

6. If the error of the best individual didn’t fall below

some threshold, go to step 3.

7. Take the best individual as a solution

Fig. 7 Pseudo-code illustrating the implemented

genetic algorithm

We can also look at this learning algorithm as at some

genetic variation of a gradient descending algorithm.

In the first step, a population is initialized somewhere

in the variable space. Better individuals survive to a

next population, worse ones are replaced. Because

each offspring is generated from some relative good

individual (a parent is uniformly selected from N best

individuals in the population) and a size of a mutation

is related to an error, population moves closer and

closer to a local/global minimum.

5 Simulator

We implemented a simulator for educational and

experimental purposes, because we didn’t find proper

one for our needs. Although we found pure simulators

for spiking neural networks, we didn’t find some easy-

to-use and sufficiently simple simulator with learning

algorithms suitable for spiking neural network

exploration and spiking activity visualization.

Our simulator implements Spike Response Model and

Integrate-and-fire model (see Section 2) and provides

visualization of running spikes and changing neuron

potentials in time. It is based on Java platform because

of portability and because Java is well spread.

5.1 Simulation types

The simulator implements two known approaches for

simulation – a clock-driven and an event-driven. The

clock-driven simulation calculates all network

variables at each step of the simulation and checks

whether something important happened. This logic is

easy to understand on the one hand on the other hand

it involves a lot of computations. Simplified Spike

Response Model is computed in our simulator in this

fashion, i.e. at each time step all neuron potentials are

computed and checked for crossing thresholds. If any

neuron’s potential crosses its threshold, it is set to zero

and spikes are sent to output synapses of that neuron.

The event-driven approach is more difficult than

clock-driven, but brings some advantages. Because of

its nature, only important events in the network are

simulated thus unnecessary computations are

eliminated. Therefore, computation complexity is

related to what happens in the network (how many

spikes are emitted and how often) in opposite to

clock-driven simulation where complexity is related to

a structure of the network and duration of a simulation

(for each time step, all neuron potentials are

computed). We use this approach for Integrate-and-

fire model, because it’s described using a differential

equation, which can be used for determining if and

when a neuron’s potential crosses a threshold.

5.2 Simulator interface

The simulator has a graphical interface for visualizing

network architectures and activity (running spikes) in

a simulated network for educational purposes.

Fig. 4 shows a graphical user interface of the

simulator with a network for the XOR problem

depicted as an example.

Using the graphical interface user can create his/her

own experiments – besides predefined experiments

Ideal solution

Error of an indivudal

Randomly generated population Survivors New generated individuals

Fig. 3 Genetic evolution in the variable space. This picture illustrates initializing a first generation (black

circles), selecting the best individuals (blue crosses) and creating new individuals (red stars) closer to the

optimal solution.

thoroughly described later. This option is currently

under development, but so far, it is possible to select

from an arbitrary network (n neurons is placed and

user manually creates synapses between them) or a

feed-forward network (whole network is generated

according to input parameters). Input and output data

are read from a XML file. Currently, only encoding

with first spike times is supported. A problem with

SNNs is that network can work with any possible

encoding on its input and output – spikes could be

interpreted in any way. The most suitable solution for

this would be probably a special algorithm for each

problem, but we focus on the basics so far.

6 Experiments

Simulator has been tested on standard XOR

benchmark and the Iris [6]. Architectures and data for

these problems are predefined, so user only selects an

experiment and runs it.

6.1 XOR problem

A first experiment was to train a network for a XOR

problem (because it’s a simple, but non-linearly

separable classification problem) as it was made in

[1]. Architecture is 3-5-1 (number of neurons in input,

hidden and output layer) with 16 synapses between

each pair of neurons. Each synapse has a fixed delay

varying from 1 to 16 milliseconds. A reason for this

architecture is a fact that only weights are trained, not

delays or time constants, and there have to be a way

how the learning process can ―pick‖ a proper delay

(although one can expect, according to results, the

trained weight vector does not look like ―1 from N‖).

A next step in this experiment involves learning all

synapses’ and neuron’ parameters, i.e. delays, time

constants, weights and thresholds, as it was made in

[2]. An advantage of this approach is a less complex

structure and therefore faster simulation.

Architecture for this test is also 3-5-1, but there are

only two synapses between each pair of neurons.

The XOR input patterns were encoded using linear

temporal coding, coding 1 at t=0 ms and 0 at t=6 ms.

One spike was always sent at t=0 as a reference spike.

Decoding a network’s output is similar – 1 is

represented by an output spike time at t=10 and 0 at

t=16.

Fig. 5 Network architecture for the XOR problem (3

input neurons, 5 hidden neurons, 1 output neuron)

Networks were trained until an error fell under 2.0

milliseconds. The error for a network was calculated

according to the equation (3).

For the architecture with 16 synapses between each

pair of neurons, several weights initializations for

back-propagation were tried and the best one was to

initialize all weights to a value of 6.0 (neurons’

thresholds 50.0). Other initializations were: different

constant values, random values between 1 and 10 and

Fig. 4 User interface of our spiking neural network simulator (a network with 3-5-1 architecture for the

XOR problem depicted)

random values between 1 and 10, but always same

weights for one pair of neurons.

Tab. 1 Different weight initialization methods for

XOR

Weight initialization

method

XOR 3-5-1, 16 synapses,

back-propagation

Constant value – 4 144 for 100,00%

Constant value – 5 117 for 100,00%

Constant value – 6 103 for 100,00%

Constant value – 7 144 for 100,00%

Constant value – 8 186 for 100,00%

Random value between 1

and 10, but all same for

one connection

198 for 92,00%

Random value between 1

and 10

131 for 100,00%

For the second architecture with two synapses per one

connection, constant value of 0.5 was used (neurons’

threshold was 1.0).

In the table (Tab. 2) are written down results for this

problem. Each combination (structure/learning

method) was observed for two values – how many

epochs were needed for the error to fall under a

specified value and also how many configurations

(different set of weights in a starting configuration or

different path of evolution) the network converged for.

Tab. 2 Results for the XOR problem

 Back-

propagation

Genetics

(SRM)

Genetics

(IF)

XOR (3-5-

1, 16

synapses)

103 for 100

%

189 for

60,00%

197 for 70

%

XOR (3-5-

1, 2

synapses)

109 for

88,00%

125 for

100,00%

92 for

90,00%

The results showed that a genetic algorithm is a

suitable way for training a network on a simple

classification non-linearly separable problem

(independently on a neuron model).

6.2 Iris benchmark

The Iris dataset consists of 150 cases divided into

three classes (50 instances for each class) which are

not linearly separable. There are 4 input variables

describing each instance and its correct classification.

These input variables were encoded by 12 neurons for

each one of them (thus 48 neurons in total) using

population encoding described in [1].

Fig. 6 Population coding illustration - we are encoding

value "a" by 8 neurons (figure taken from [1]).

Population coding is used for a greater resolution than

in a simple linear temporal coding. This type of

coding is more biological plausible, because neurons

can distinguish spikes only to certain limits (according

to [1], cortical times are inherently noisy and a

resolution under 1-2ms is not possible). Using more

neurons to encode one value it is possible to resolve

values under this resolution.

Fig. 7 Network architecture for the Iris problem (8

hidden neurons in two layers, 3 output neurons for 1:N

coding)

For this benchmark, the experiment was ran 10 times

and always learned for 300 epochs. Data was

separated into two sets, training (70% from the

original set) and testing (30%).

Output encoding for this benchmark was 1:N, i.e. first

firing output neuron is a winner and points out a

predicted class. The error is calculated as a square of

difference between an ideal firing time and actual

firing time, where the ideal firing time is a firing time

of a neuron representing a correct class. Additionally,

the difference has to be bigger than some minimum

value (because of noise in synapses and neurons).

Tab. 3 Results for the Iris problem

Results after

300 epochs

Training set Testing set

Test 1 96,23% 90,91%

Test 2 98,10% 91,11%

Test 3 95,10% 79,17%

Test 4 97,32% 92,11%

Test 5 92,52% 86,05%

Test 6 97,09% 97,87%

Test 7 92,08% 95,92%

Test 8 97,22% 97,62%

Test 9 94,00% 88,00%

Test 10 97,27% 87,50%

According to results, the network provided good

prediction and proved it can be learned for this type of

problem with a population coding using our genetic

algorithm.

7 Conclusions

We have successfully created a simulator for

experimental purposes and presented a simple genetic

learning algorithm for spiking neural networks. The

simulator allows running experiments, displaying

network architecture and studying spiking networks.

For learning we have implemented SpikeProp [1] with

enhancements [2] and the genetic algorithm presented

in this paper.

The proposed genetic algorithm has been tested on

standard benchmark tests and it showed we were

capable to learn spiking neural network for these

datasets. Experiments showed we can use this

approach with both used neuron models (SRM and IF)

and without any specific knowledge of the network

structure.

8 Acknowledgment

This work has been supported by the research program

"Transdisciplinary Research in the Area of Biomedical

Engineering II" (MSM6840770012) sponsored by the

Ministry of Education, Youth and Sports of the Czech

Republic.

9 References

[1] Bohte, S. M., Kok, J. N., and Poutre, J. A. L.

Error-backpropagation in temporally encoded

networks of spiking neurons. Neurocomputing,

48(1-4):17—37, 2002.

[2] Benjamin Schrauwen, Jan Van Campenhout.

Improving SpikeProp: Enhancements to An Error-

Backpropagation Rule for Spiking Neural

Networks. Proceedings of the 15th ProRISC

Workshop, 2004.

[3] N.G. Pavlidis, D.K. Tasoulis, V.P. Plagianakos,

G. Nikiforidis and M.N. Vrahatis. Spiking Neural

Network Training Using Evolutionary

Algorithms. Intemational Joint Conference on

Neural Networks, Montreal, Canada, July 31 -

August 4, 2005.

[4] Romain Brette, Michelle Rudolph, Ted Carnevale

and others. Simulation of networks of spiking

neurons: A review of tools and strategies,

February 4, 2008.

[5] Wolfgang Maass. Networks of Spiking Neurons:

The Third Generation of Neural Network Models.

Neural Networks, Vol. 10, No. 9, pp. 1659-1671,

1997.

[6] UCI Machine Learning Repository: Iris Data Set.

http://archive.ics.uci.edu/ml/datasets/Iris.

http://archive.ics.uci.edu/ml/datasets/Iris

