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Abstract

Estimation of continuous parameters is frequent task in modelling and simulation.
There are several general purpose algorithms available for this task. We bench-
marked these algorithms in order to recommend an appropriate algorithm for our
model identification problem. We present results of optimization algorithms for
standard benchmarking functions and show the importance of proper parameter
setting. When these algorithms are applied to the estimation of model parame-
ters, results are quite different. For this task, the gradient (quasi-Newton) and the
nature inspired method (CMAES) can be efficiently combined, achieving the best
optimization performance.
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1 Introduction

The optimization in the unconstrained space of contin-
uous parameters is largely different from the combina-
torial optimization. The search space is infinite but the
gradient or hessian can be used to navigate in this space
more efficiently.

However the shape of the search space can often pre-
vent gradient based methods to converge. In this case,
nature inspired methods such as Differential Evolution
or Particle swarms would be more appropriate to use.

In this paper, we benchmark several continuous opti-
mization methods. The benchmarking functions were
selected to provide a wide spectrum of optimization
problems.

Parameters of optimization methods were tuned for
each benchmarking function, and their performance
was significantly improved.

After that, we apply the methods to optimize param-
eters of data mining models. This is quite challenging
task, as soon as the search space differs significantly for
data mining models with linear, Gaussian or sigmoidal
transfer functions. Also, the training data set influences
the shape of the search space.

2 Optimization methods

In this section, we shortly describe methods for opti-
mization of continuous parameters that are used in our
experiments.

2.1 Gradient Based Methods

The Quasi-Newton method (QN) [1] is a very popular
method of nonlinear continuous optimization. It com-
putes search directions using first-order (gradient) and
second-order derivatives (Hessian matrix). To reduce
the computational complexity the Hessian matrix is not
computed directly, but estimated iteratively using so
called updates [2].

The Conjugate Gradient method (CG) [3], a non-linear
iterative optimization algorithm, is based on an idea that
the convergence can be improved by considering also
all previous search directions, not only the actual one.
Restarting (previous search direction are forgotten) of-
ten improves properties of CG method [4]. CG method
uses only the first-order derivatives.

2.2 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are inspired by Dar-
win’s theory of evolution. EAs cover more different
approaches, mainly the Genetic Algorithms (GAs) [5]
and the Evolution Strategies (ES) [6] Population of in-
dividuals are evolved according to simple rules of evo-
Iution. Each individual (phenotype) has a fitness as-
signed. Phenotype is constructed using a genetic infor-
mation (genotype). Individuals are crossed and mutated
by genetic operators while the most fit individuals are
selected to survive. After several generations, the mean
fitness of individuals stagnates.

Tab. 1 Optimization methods used can be divided
into several categories: gradient based, evolutionary,
swarm, colony and others.

Abbrv. Search Optimization method
QN Gradient Quasi-Newton method
CG Gradient | Conjugate Gradient method
DE-pal Evol. Differtial Evolution ver. 1
DE Evol. Differtial Evolution ver. 2
SADE Evol. SADE genetic method
CMAES Evol. Covariance Matrix Adapt. ES
PSO Swarm Particle Swarm Optimization
PSOIW Swarm PSO - IW

CACO Colony Cont. Ant Colony Opt.
ACO* Colony Ext. Ant Colony Opt.
DACO Colony Direct ACO

AACA Colony Adaptive Ant Colony Alg.
API Colony API Ant Alg.
HGAPSO Hybrid Hybrid of GA and PSO
SOS Other Stoch. Orthogonal Search
0S Other Orthogonal Search ver. 1
OS-pal Other Orthogonal Search ver. 2
RANDOM Other Random search

The Differential Evolution (DE) [7] is a Genetic Al-
gorithm with a special crossover scheme. It adds a
weighted difference between two individuals to a third
individual. For each individual in the population, an
offspring is created using the weighted difference of
parent solutions. The offspring replaces the parent in
a case it is fitter. Otherwise, the parent survives and is
copied to the next generation. The pseudocode describ-
ing, how the offspring is created, can be found e.g. in
[8]. In our experiments we use two different implemen-
tations (DE, DE-pal [9]) of the method.

The Simplified Atavistic Differential Evolution (SADE)
algorithm [10] is an Evolutionary Algorithm using a
real-valued encoding. It works with three genetic oper-
ators: the mutation (gaussian noise), the local mutation
(final tuning) and the DE crossover scheme mentioned
above.

The Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) [11] is the state-of-the-art Evolution Strat-
egy where new individuals are sampled according to a
continually updated covariance matrix of a multivariate
normal mutation distribution.

2.3 Swarm Methods

The Particle Swarm Optimization method (PSO) uses
a swarm of particles to locate an optimum. According
to [12] particles “communicate” information they find
about each other by updating their velocities in terms
of local and global champions; when a new champion
is found, the particles will change their positions ac-
cordingly so that the new information is ’broadcasted”
to the swarm. The particles are always drawn back both



to their own personal best positions and also to the best
position of the entire swarm. They also have stochas-
tic exploration capability via the use of random con-
stants. Here, we use to modifications of the algorithm:
the canonical one (PSO) and the Particle Swarm Opti-
mization with Stochastic Inertia Weight (PSO-IW) [13].

2.4 Colony Optimization Methods

The Ant Colony Optimization (ACO) algorithm is pri-
marly used for discrete problems (e.g. Traveling Sales-
man Problem, packet routing). However many modifi-
cations of the original algorithm for continuous prob-
lems have been introduced recently [14]. These algo-
rithms mimic the behavior of real ants and their com-
munication using pheromones. We have so far imple-
mented the following ACO based algorithms:

The Continuous Ant colony optimization (CACO) was
proposed in [15] and it works as follows. There is
an ant nest in a center of a search space with several
search vectors leading from the nest. Ant chooses a di-
rection using a roulette wheel selection applied to the
pheromone amounts attached to each vector. From the
position determined by the selected vector the ant per-
forms a random walk inside a local search radius. This
radius can shrink in time to do more detailed search
around the point. The quantity of pheromone associ-
ated with explored vector is increased proportionally to
the quality of the solution. If a better solution is found,
the vector is changed to point to actual ant position.

The Ant Colony Optimization for Continuous Spaces
(ACO*) [16] was designed for the training of feed-
forward neural networks. However, it is able to solve
mixed discrete-continuous optimization problems. In
case of continuous variables the pheromone is repre-
sented by probability density function (PDF) - a mix-
ture of Gaussian functions. Each time an ant walks
through a continuous variable, corresponding PDF is
sampled and so the part of a new solution candidate
is generated. Other features of ACO like pheromone
reinforcement and evaporation are retained.

The Direct Ant Colony Optimization (DACO) [17] uses
two types of pheromones - one for mean values and
one for standard deviations. These values are used by
ants to create new solutions and are updated in the ACO
way.

The Adaptive Ant Colony Algorithm (AACA) [18] en-
codes solutions into binary strings. Ants travel from the
most significant bit to the least significant bit, choos-
ing nodes O or 1 for each step. After finishing the trip,
the resulting binary string is converted into a solution
candidate and the pheromone on the path is reinforced
according to the quality of the solution. The probabil-
ity of a change in more significant bits decreases during
algorithm run.

The API algorithm [20] is named after Pachycondyla
apicalis and it simulates the foraging behaviour of these
ants. Ant moves from a nest to a one of several hunt-
ing sites, generated in its neighborhood. It performs a
random move in the small neigborhood of the selected

hunting site to generate a new solution. If an improve-
ment occurs, the next search leads to the same hunting
site. If the hunt is unsuccessful more than p times for a
single hunting site, the hunting site is forgotten and ant
randomly generates a new one. After some time period
the nest is moved to the best of all solutions.

2.5 Hybrid Search

The Hybrid of the GA and the PSO (HGAPSO) algo-
rithm was proposed in [12]. PSO works based on a
social adaptation of knowledge, and all individuals are
considered to be of the same generation. On the con-
trary, GA is based on the evolution over successive gen-
erations, so the changes of individuals during a single
generation are not considered. In nature, individuals
will grow up and become more suitable to the environ-
ment before producing offspring. To incorporate this
phenomenon into GA, PSO is adopted to enhance the
top-ranking individuals of each generation.

2.6 Other Methods

The Orthogonal Search (OS) optimizes a multivariate
problem by selecting one dimension at a time, mini-
mizing the error at each step. The OS, also known as
the Powell’s method, was used in [21] to train single
layered neural networks.

In our experiments, we use two implementations des-
ignated the OS and the OS-pal (see [9]) differing in a
type of linesearch method and stopping criteria. The
Stochastic Orthogonal Search (SOS) differs from OS
just by random permutations of dimension order.

As the last method we have employed a simple Random
search (RANDOM), where in each iteration the most fit
solution out of multiple randomly generated is kept.

In the next section, implemented optimization meth-
ods are evaluated in terms of convergence on standard
benchmarking functions and their parameters are ad-
justed for each function.

3 Performance on Benchmarking func-
tions

In our experiments, we use a representative set of uni-
modal and multimodal functions (Table 2). For the de-
tailed description of functions, their visualization and
references see [22].

3.1 Search space visualization

Most of the benchmarking functions can be easily vi-
sualized, as soon as they are two dimensional. Figure
1 shows the example of PSO algorithm optimizing the
Rosenbrock’s valley function. Particles are marked by
circles, the solution by a cross.

3.2 Algorithm parameter tuning

For each algorithm, we examined the effect of all pa-
rameters on the success rate and number of iterations
for each benchmarking function. All results were ob-
tained as an average values for 100 algorithm runs with
constant parameter setting and each run was limited to



Tab. 2 Unimodal and multimodal benchmaring func-
tions used in our experiments.

Abbrv. Modality Name of the function
BE Unimodal Beale’s function
BO Unimodal Booth’s function
DJ Unimodal | De Jong’s (sphere) function
EA Unimodal Easom’s function
MA Unimodal Matyas’ function
RO Unimodal Rosenbrock’s valley
TR Unimodal Trid function

ZA Unimodal Zakharov’s function
AC Multimodal Ackley’s path

BR Multimodal Branin’s function
GP Multimodal Goldstein—Price function
GR Multimodal Griewangk’s function
HI Multimodal Himmelblau function
LA Multimodal Langerman’s function
L3 Multimodal Levy function no. 3
LS Multimodal Levy function no. 5
MI Multimodal Michalewicz’s function
RN Multimodal Rana’s function
RA Multimodal Rastrigin’s function
SH Multimodal Shekel’s foxholes
SB Multimodal Shubert’s function
SW Multimodal Schwefel’s function
WH Multimodal Whitley’s function

Fig. 1 PSO: particles inside a valley of the Rosenbrock
benchmarking function.
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Fig. 2 Average success rate for PSO—original (social ac-
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Fig. 3 Average number of iterations taken by PSO-
original (¢2 = 0.00, ..., 1.00, step = 0.05).

2000 iterations.

For the stopping condition adds its limit to the itera-
tion counter, we subtracted this number from the ob-
served data if the number of iterations was lower than
the overall limit of iterations taken. By doing this we
get better idea about the speed of convergence for tested
algorithms as the number used in stopping criterion is
very high for numerical methods but proved to be use-
ful for the methods inspired by nature. As an example,
we show the sensitivity of the original PSO algorithm to
the change of its social acceleration parameter ¢o. The
other parameters cognitive acceleration coefficient ¢,
and population size were constant. The higher this pa-
rameter was set, the better results we observed (Figure
2).

We also recorded two exceptions, the Rosenbrock’s val-
ley and the Rastrigin’s function. For the Rosenbrock’s
valley the success rate was decreasing up to the value
of ¢o = 0.5 and then followed the rising trend. This
might be caused by having ¢ < ¢; means the particles
are staying in the valley disregarding whether it is the
correct side; the valley is curved. But as the parame-
ter starts to outweight the local attraction rate, particles
are more easily shifted to the lower areas of the valley
and keep “sliding” towards the global optimum as the
particle with the lowest value leads the way.

The latter function is highly multimodal and setting the



!

R A
API AACA ACO* DACO PSO PSO-FI PSO-C DE SADE  PBIL HGAPSO
O AC 0 GP mmm |5 mmmm RO =3 TR

Emmm BR e LA B RN = SW
o EA B 13 1 RA I DJ

Fig. 4 Comparison of the average success rate for de-
fault parameter setting and for recommended setting.

global attraction to a high value leads to a premature
convergence into a shared global candidate which is
unfortunately one of the many local minima. This is
exactly the opposite case than with the previous param-
eter as the decrease is clearly visible for values when
¢ > ¢1, meaning that this parameter outweighs the
local attraction parameter. Therefore the particles are
more easily dragged into a local minimum.

Considering the iteration count we can notice that again
the valley” functions reflect change of ¢ significantly:
the Beale’s function and the Rosenbrock’s valley (Fig-
ure 3). For these the iteration count taken by PSO in-
creases to a certain point and then decreases, both times
with the same rate. Global optimum of Beale’s func-
tion is hidden in a hard to find valley, that might be the
cause of the particles missing it when strongly attracted
to the global optimum. However the Rosenbrock’s val-
ley is easy to find and the iterations taken by PSO on
this function correspond to the success rate: as soon as
the success rate increases the iteration count decreases.
This follows the idea of particles forming a kind of a
snake or a queue with head of this formation having the
lowest value and speeding it towards the solution as il-
lustrated by Figure 1.

In [22], you can find the the sensitivity of all algorithms
to all their parameters.

Based on the sensitivity evaluation, we have changed
the default setting of parameters to a recommended set-
ting (the same for all benchmarking functions).

Two columns if Figure 4 correspond to each algorithm.
The one on the left is for the default parameter setting
(labeled ““def”), the one on the right represents results
obtained for the setting recommended in this chapter
(labeled “rec”). Different recommended settings were
used for different function types if appropriate. Col-
umn height represents summation of success rates as
recorded for each benchmark function, these are repre-
sented by individual color boxes. The ideal algorithm
would reach 100% which would mean a 100% success
rate for each test function. On the far right there are
two boxplots, the left one for average success rates with
default parameter setting, the right one for average suc-
cess rates with recommended setting. We can clearly
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Fig. 5 Average success rate for implemented methods
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Fig. 6 Average number of iterations taken by imple-
mented methods.

see that there was a significant improvement.

Average increase in the success rate was 16.09%, the
lowest 4.78% for the HGAPSO algorithm, which was
already giving very good results, and the highest was
26.35% for PSO with FI velocity update formula.

3.3 Overall comparison

The numerical methods rank poorly in terms of average
success rate because of multimodal functions (Figure
5). The iteration count of numerical methods is lower
(Figure 6), also thanks to their premature convergence
to local minima on multimodal functions. The aver-
age convergence of numerical methods is also worsen
by poor results on some specific misleading functions,
such as the GP function with multiple local optima near
the global optimum. In our comparison, nature inspired
methods dominated. The SADE method was the most
accurate in average and the ACO* method [19] had
the best accuracy/iterations ratio. However, with bet-
ter stopping conditions and multiple restarts, numerical
methods might score better.

4 Optimization of model parameters

In the previous section, we show that, not surpris-
ingly, the performance of optimization methods de-
pends strongly on the shape of function surface. If
we would like to optimize parameters of data mining
models, we cannot simply choose the best performing
method SADE and apply it to this problem.
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Fig. 7 The Sine neuron optimized by Quasi-Newton algorithm with numerical estimates of the analytic gradient.
Visualization of the training error surface from different perspectives (left) and the convergence history (right).

First we visualize the shape of “error” surface. Each
parameter of a data mining model to be optimized is
one dimension of the error surface. By adjusting pa-
rameters, the error of the model on training data can be
minimized.

4.1 Search space visualization

The training error is dependent variable and model pa-
rameters are independent variables. To be able to see,
how the training error surface looks like, we need to use
projections of the multidimensional space. We use a
scatterplot matrix of training error plots. For each plot,
two parameters are varied in the interval (—15,15), all
other parameters are fixed (values in actual iteration)
and the training error is computed in each point of the
plot. The darker the background is, the lower the train-
ing error. We visualize also the iteration history in each
plot and observe, how the process converges.

This visualization is particulary useful for exploring
the training error surface complexity in each dimension
(how a change of individual parameter influences the
error).

In the Figure 7, you can observe the training log of
the single Sine neuron on the Bosthouse data set [23].
The Quasi-Newton method (QN) needed almost 1400
iteration to find optimal values of 24 parameters (Bost-
house has 12 features, the output of the model is y =
E}il sin(a; * x; + a1244)). The algorithm managed
to escape from a local minima (iteration 170) and con-
verged to a global optima.

For each model, and also for each data set, the shape of
the error surface is different. The most significant is the
type of transfer function. Also, the surface gets more
complex for a model combined from several models.

4.2 Performance on individual data sets

The combination of models (or neurons) into one model
increases the complexity of the error surface and makes
the optimization task harder. Our GAME modeling
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Fig. 8 Box plots showing classification accuracy of
models optimized by individual algorithms on the Glass
data sets.

strategy [24], generates the final model using elemen-
tary models such as the Sine model examined above.
The elementary models are optimized independently,
one by one. For classification tasks, we generate one
model for each category and the predicted class is given
by the model with a highest response.

Next experiment was designed to find the most suit-
able algorithm for optimizing parameters of models.
We have evaluated the performance of individual algo-
rithms on two different data sets. The Glass data set was
obtained from the UCI repository and the Spiral data set
is described in [25].

For the Glass data set (Figure 8), the best algorithm
was the QN followed by CMA-ES and DACO. On
the Two intertwined spirals problem (Figure 9) results
were completely different. The only optimization al-
gorithms capable of training successful networks were
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Fig. 9 The classification accuracy of models optimized
by individual algorithms on the Spiral data sets.

Ant colony based DACO and AACA. All other algo-
rithms failed to produce useful classifiers.

There are more methods employed in the evaluation
than in previous benchmarks. The DE-pal and OS-pal
are reference implementations of Differential evolution
and Orthogonal search methods from the PAL library
[9]. When their results are compared with the results of
the same algorithms implemented in our environment,
you can see, that good implementation and well tuned
parameters improve accuracy significantly.

The all algorithm pseudo-randomly chooses the opti-
mization algorithm for each elementary model. The
all-top algorithm selects just from two algorithms the
QN and CMA-ES and the final classifier is therefore
optimized by both of them.

4.3 Averaged performance

Figure 10 averages the results over following group of
data sets: Cancer, Diabetes, Gene, Glass, Heart, Heartc,
Horse. The final accuracy was computed as average
from all results of ten fold cross validation over all data
sets (70 numbers averaged for each method).

For detailed description of data sets and the methodol-
ogy of experiments, you can refer to [26].

The differences among the best three methods all-top,
CMA-ES and ON are not significant. The QN requires
significantly lower number of iterations and we use it as
the default optimization method in our FAKE GAME
open source software [27].

5 Conclusion

In this paper, we present results of several algorithms
for optimization of continuous parameters. Our results
on benchmarking functions indicate, that nature in-
spired methods are more accurate for multimodal func-
tions. Numerical methods, on the other hand, converge
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Fig. 10 The mean accuracy of methods over all data sets

faster with much lower number of function evaluations,
when properly configured.

Appropriate configuration of algorithms is very im-
portant and we show that it can significantly improve
their convergence. We plan to experiment with meta-
learning methods in order to configure algorithms for
given problem described by meta-data.

Estimation of parameters for data mining models is
quite different problem. Visual inspection tools allowed
us to explore the multi-dimensional search space. The
transfer function of the model is the dominant factor in-
fluencing the complexity of the search space. Also the
data set is important.

For simple problems from the UCI repository, the QN
method seems to be a reasonable choice for the data
mining model optimization. For certain harder prob-
lems such as fitting Sine models to the Spirals problem,
only ACO based methods converge.

We have implemented all algorithms and benchmarks
into the open source Java COntinuous Optimization Li-
brary (JCOOL). Currently, we plan to extend JCOOL
with an algorithm recommendation system based on a
knowledge base and meta-data.
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