
BCP - A BENCHMARK FOR HYBRID MODELLING
AND STATE EVENT MODELLING

Andreas Körner1, Bernhard Heinzl1, Matthias Rößler1, Stefanie Winkler1,
Irene Hafner1, Günter Schneckenreither2, Günther Zauner2, Niki Popper2

1 Vienna University of Technology, Institute for Analysis and Scientific Computing
1040 Vienna, Wiedner Hauptstraße 8, Austria

2 dwh Simulation Services
1070 Vienna, Neustiftgasse 57-59, Austria

akoerner@asc.tuwien.ac.at (Andreas Körner)

Abstract

Modelling and simulation of hybrid systems is getting more and more important
in advanced modelling theory and application. Therefore, the requirements re-
garding flexibility on modern simulators are getting higher and higher. The neces-
sity of fast and stable algorithms is increasing considering higher complexity in
simulation questions. ARGESIM started in 1990 the series Comparison of Sim-
ulation Software in the journal Simulation News Europe (SNE). These software
comparisons developed towards benchmarks not only for simulation tools but also
for modelling tools and for modelling techniques and modelling approaches. To
see how modelling and simulation environments deal with state events of differ-
ent order, three classical examples are discussed in this benchmark. These parts
offer a spectrum of questions for testing basic features and they represent mini-
mum requirements to hybrid simulators regarding state events. Sample solutions
are carried out in MATLABⓇ and partly in SIMULINKⓇ and can be used for
comparison with solutions calculated with other simulation environments.

Keywords: hybrid modelling, state event modelling, bouncing ball, electrical circuit, pen-
dulum

Presenting Author’s Biography
Andreas Körner. He passed his bachelorstudy in electrical engineering and
his masterstudy in telecommunications. Now he is on the way to finish
his diplomastudy in technical mathematics. Before he started his academic
studies he passed a higher technical engineering college for electronics and
technical informatics.
His field of activity include physical modelling and simulation. Because of
his education in electrical engineering, his work is focused on technical ap-
plications. Another scope of work is the usage, design and development of
e-learning systems for mathematical education and education in modelling
and simulation.

1 Introduction
The following benchmark is structured in three inde-
pendent assignments. Each of this assignment consists
of the definition and the sample solution in MATLABⓇ

or SIMULINKⓇ.

At Vienna University of Technology, in 1990 compar-
isons for simulation software were set up. These new
comparison C20 - A Benchmark for Hybrid Modelling
and State Event Modelling deals with different hybrid
modelling topics.

To implement and test the models, we used MATLAB
and SIMULINK as simulation software. MATLAB is
a platform independent software developed by Math-
Works. Compared to other mathematical software,
MATLAB mainly uses numerical methods for solving
problems instead of analytical ones.

SIMULINK is a continuous simulator with a graphical
user interface, embedded in the MATLAB environment.
SIMULINK has also been developed by MathWorks
and needs MATLAB for execution. By using prede-
fined blocks, different tasks can be modelled graphi-
cally. Because it is based on MATLAB, the solutions
are also calculated numerically, and therefore several
ordinary differential equation solvers (ODE solvers)
can be selected.

2 Rotating Pendulum with Free Flight
Phase

This example describes a classical idealized pendulum
on a rope with damping. The body, which is considered
a point mass, is connected to a fixed point in a room
via a rope of given length. The rope is assumed to be
non-elastic and without mass. As a simplification, it
is presumed that the body can move freely only in the
plane, i.e. the area of a circle with a radius equal to the
length of the rope.

Using these assumptions, the behavior of the pendulum
can be described with two states:

∙ If the rope is tight, the body is moving along a
circular path (state ”bound”). Since the radius is
fixed, the movement in this state can be described
by one variable, i.e. the angle between the rope
and the upper perpendicular.

∙ If the rope is loose, the body is free falling (state
”flying”) until the rope is tight again. This move-
ment is defined by two state variables, i.e. the
Cartesian x- and y-coordinates of the body.

The different states are illustrated in Fig 1, where you
can also see that the two cases have different numbers
of degrees of freedom, which is the reason why the
state space dimension changes as the pendulum alters
its state.

Fig. 1 Left: Pendulum with mass m and length l;
middle: Classical oscillating pendulum (state ”bound”)
with angle ' as degree of freedom; right: Free falling
pendulum mass (state ”flying”) and Cartesian coordi-
nates as degrees of freedom.

2.1 State ”Bound”

How the various forces are affecting the mass during
the circular movement in the ”bound” state can be seen
in Fig. 2.

Fig. 2 Forces affecting the mass in the ”bound” state

The state ”bound” can be described by using the angular
momentum balance, which, with regard to Fig. 2, leads
to

'̈+
k

m
'̇− g

l
sin (') = 0, (1)

with the damping factor k, mass m, length of the rope l
and the earth acceleration g. Furthermore, the force on
the rope

F = −mg cos (') +ml'̇2 (2)
provides a criteria when a state change from ”bound” to
”flying” occurs. If this force becomes lower than zero,
the gravitational force outweighs the centrifugal force
and the pendulum is entering the ”flying” state.

2.2 State ”Flying”

Being in the ”flying” state, the body has one more de-
gree of freedom compared to the state ”bound”. The
motion of the mass is described in this state by conser-
vation of momentum in x- and y-direction:

mẍ = −kẋ, (3)
mÿ = −mg − kẏ. (4)

Using an additional geometric equation,

r2 = x2 + y2, (5)

it is tested if the rope is loose or completely tight. If r
fulfills r ≥ l, the rope has become tight again, forcing
the body back on the circular path and the pendulum
switches to the ”bound” state again.

Summing up, Fig. 3 shows an overview of the two dif-
ferent models with criteria for state changes.

Fig. 3 Summary of the two state model with criteria for
state changes

2.3 Modification

As a modification of this example, we also considered
that a region with different damping factor could occur.
This region can be explained for example by the body
diving in a medium of different density. However,
it is assumed that the different damping factor is
affecting the pendulum only in the ”bound” state. The
”flying” state remains unchanged. An illustration of
this situation is shown in Fig. 4.

In addition to the ”bound” and ”flying” state from the
standard example, it now has to be switched between
three models, where the third one is described by the
same equations as the ”bound” state, except for a dif-
ferent value of the damping factor.

Fig. 4 Region with different damping factor in the
”bound” state

2.4 Experiments and Results

This pendulum example was implemented in MAT-
LAB as well as in SIMULINK. For detection of state
events in MATLAB, we made use of the event location
property of the MATLAB ODE solvers in connection
with the odeset command and an event function.

The graphical component oriented simulation in
SIMULINK on the other hand uses If blocks and If
Action subsystems to detect state events and enable or
disable corresponding subsystems.

Since the ”bound” state is described with polar coordi-
nates whereas the ”flying” state uses Cartesian coordi-
nates, coordinate transformation has to be performed at
each state change to obtain the new initial conditions
for the ODEs.

Implementation with MATLAB

The main program in MATLAB contains a while loop
for repeated changes of the state model. This while
loop is terminated when a special exit condition is sat-
isfied. In our example, this exit condition is the maxi-
mum oscillation being less than �/10.

The event detection in MATLAB is realized using the
odeset command, e.g.

options=odeset(’Events’,@eventloc).

The function eventloc is the so-called event func-
tion. The MATLAB ODE solver can detect an event
by locating transitions to, from, or through zeros of
this event functions and can terminate the calculation
in such a case [1]. The event function of the ”bound”
state, for example, is of the form

function [value,isterminal,direction]=

eventloc(t,w)

global m L k k2 g

value=zeros(3,1);

value(1)=-m∗g∗cos(w(1))+m∗L∗w(2)ˆ2;
value(2)=sin(w(1))ˆ2+10∗w(2)ˆ4-

sin(pi/10)ˆ2;

if k˜=k2&w(1)>=6∗pi/7&w(1)<=8∗pi/7
value(3)=-1;

else

value(3)=1;

end

isterminal = [1;1;1];

direction = [0;0;0];

end

This function receives two input parameters, i.e. the
current simulation time t and the vector w with the
state variables (angle and angular velocity). The first
element of the calculated vector value represents the
tension on the rope. If this value becomes negative,
the state changes from ”bound” to ”flying” (cf. Eq.
2). If the maximum oscillation of the pendulum is
lower than �/10, value(2) becomes negative and
the simulation is stopped. Finally, value(3) changes
its sign when the angle w(1) enters the region with
different damping factor, i.e. [6�/7, 8�/7] in this
example.

The event function of the ”flying” state has the follow-
ing structure:

function [value,isterminal,direction]=

eventloc(t,v)

global L

value = Lˆ2-(v(1)ˆ2+v(2)ˆ2);

isterminal = 1;

direction = -1;

end

If the output parameter value of this function be-
comes negative, the state changes from ”flying” to
”bound”, according to Eq. 5.

The MATLAB options composition of the odeset
command is a structure of optional parameters that
change the default integration properties, for example:

[to,w,tE,wE,iE]=ode45(@f,t,w0,options).

For this example, we used ode45 as ODE solver, but
the event detection works just as well with any other
MATLAB ODE solver. The return value iE contains
the index of the event function that has vanished and
can be used to determine which event has occurred [1].

Fig. 5 and Fig. 6 show the results of a simulation run
of the basic model (no region with inconstant damping)
with the parameters

m = 1.5 kg, k = 0.9 kg/s,

l = 1 m, g = 9.81 m/s2,

and the initial conditions

'(0) = '0 = �/4,

˙'(0) = '̇0 = 15 1/s.

0 1 2 3 4 5 6 7 8

-1

-0.5

0

0.5

1

time [s]

x
[m

]

Fig. 5 Coordinate x(t) during basic simulation run

In Fig. 5, the progression of the x-coordinate over
the simulation time is shown. The simulation was
terminated after the maximum oscillation was less than
�/10. This area is represented by the horizontal dashed
lines. The vertical dotted lines show the points in
time when a state change occurred. Using MATLAB,
these points can be identified exactly. The simulation
starts in the ”bound” state. At t = 1.92 s, the state
changes from ”bound” to ”flying” and after t = 2.66 s,
it changes back to ”bound” and remains there until the
simulation is terminated at t = 8.5 s. Fig. 6 depicts the
corresponding trajectory (x(t), y(t)) of the pendulum
body, where you can see the circular movement during

the ”bound” state and, deviating from that, the move-
ment during the ”flying” state, which occurred once.

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x [m]

y
[m

]

Fig. 6 Trajectory (x(t), y(t)) during basic simulation
run

Fig. 7 and Fig. 8 present the simulation results with
the modified model and a chosen damping factor of
k2 = 12.8 in the region ' ∈ [6�/7, 8�/7].

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-1

-0.5

0

0.5

1

time [s]

x
[m

]

Fig. 7 Coordinate x(t) during simulation run with mod-
ified model

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x [m]

y
[m

]

Fig. 8 Trajectory (x(t), y(t)) during simulation run
with modified model

Like in Fig. 5, the red horizontal dashed lines in Fig.
7 are representing the area, in which the simulation is
terminated (if the pendulum stays in there). The outer
green lines illustrate the region with different damping
factor. The points of time, when a state change occurs,
are indicated by vertical dotted lines in Fig. 7. The first
changes occur at t = 0.13 s, when the mass is entering
the area with different damping and at t = 0.21 s, when
it is left again. At t = 0.61 s, the state is changed to

y xy Graph

x2phi

x y dx dy

ph
i

dp
hi

x(t) Graphx

state flying

x0

y0

dx0

dy0

en
x
y

dx
dy

state bound

dphi0

phi0

damping

phi

dphi

en

phi2x

ph
i

dp
hi

dy dx y x

phi0

[pi/4]

dphi0

[15]

double-click
to switch

RS flip-flop

S

R
Q

NOT
 inconstant
damping

1

 constant
damping

0

Fig. 9 SIMULINK model of the rotating pendulum

”flying” and switched back to ”bound” at t = 1.41 s.
At last, the mass is entering the region with different
damping again at t = 1.5 s and is staying in there until
the simulation is terminated at t = 1.85 s. Fig. 8 shows
again the corresponding trajectory. Due to the much
higher damping factor in the small region, the ”flying”
state is already setting in before the pendulum can man-
age a first full rollover.

Implementation with SIMULINK

Fig. 9 shows the basic structure of the SIMULINK
model. The two subsystems at the top and at the bottom
contain the models for the two different states and are
shown in Fig. 10 and Fig. 11. These subsystems can
be enabled or disabled via a control input port, which
is controlled by a RS flip-flop. A NOT gate takes care
of these two ports being complementary to each other,
so that exactly one of the two subsystems is enabled at
each point of time [2].

The output signals of the subsystems, which represent
the current position and velocity of the pendulum, are

handed to the respective other state model, after a co-
ordinate transformation (blocks phi2x and x2phi).
However, the other subsystem does not read the val-
ues of its input ports until it is enabled. When it be-
comes active, the subsystem resets its integrators, caus-
ing them to read in the values of their initial conditions
from the corresponding input ports [2].

To visualize the results, a scope and a xy graph block
are connected to the signal ports. Two switches, which
are controlled by the same signal as the state models,
take care that the correct output values from the current
enabled subsystem are used for the plot.

To detect state events, one can use SIMULINK If
blocks and If Action subsystems. In the ”bound” sub-
system for example, the force on the rope is calculated
according to Eq. 2, zero-crossing of this value is de-
tected via an If block, and a connected If Action sub-
system initiates a changeover to the ”flying” subsystem
by sending an impulse to the RS flip-flop, causing it to
toggle its output value.

Similarly, the point of time to terminate the simulation
is detected by checking the maximum oscillation, i.e.
the current deflection of the body when the velocity is
zero. In this example, it is terminated after the maxi-
mum oscillation does not exceed �/10 any longer.

The modification of the model to implement an incon-
stant damping factor is realized in the subsystem of the
”bound” state. By checking the current angle phi, it
is observed which region the pendulum is being in, and
according to this information the corresponding damp-
ing factor is chosen via a switch.

dx

dy

-k/m*dx

-k/m*dy

ddy

ddx

x

y

r = sqrt(x^2+y^2) if(r>=L)

g

-k/m

-k/m

dy
5

dx
4

y
3

x
2

en
1

switch to state bound

Action
Out

f(u)

1
sxo

1
sxo

1
sxo

1
sxo

u1 if(u1 >= 1)

-K-

-K-

9.81

Enable

dy0
4

dx0
3

y0
2

x0
1

Fig. 10 Basic simulation model for the ”flying” state as implemented in SIMULINK

ddphi dphi

g/L*sin(phi)

k/m*dphi

F = -m*g*cos(phi)
 + m*L*dphi^2 if(F < 0)

if max. oscllation < pi/10

phi

1/m

g/L

if phi is the region
with damping k2

en
3

dphi
2

phi
1

use damping
factor k2

Action
Out

switch to state flying

Action
Out

stop simulation

Action

cos

sin

k2

12.8

k

1
sxo

1
sxo

damping
factor

u1 if(u1 <= 0)

u1 if(u1 < 0)

u1

u2
if(..)

-K-

-K- f(u)

f(u)

 k

0.9

Enable

damping
3

phi0
2

dphi0
1

Fig. 11 Basic simulation model for the ”bound” state as implemented in SIMULINK

3 Bouncing Ball
The second example deals with the model of a bounc-
ing ball according to [3] and [4]. In this example the
simulator will be tested regarding different categories
of state events. The model of a bouncing ball consists
of two different states: The free-falling phase and the
bounce. In this section, we will discuss the possibilities
how to build such a model and how to extend it.
We start with a basic model, that only takes the gravita-
tional force in account and treats the bounce as a state
event, where some energy is lost. Then we will extend
the model in two different ways: First we introduce air-
resistance, then we will simulate the bounce by adding
a spring-damper-system.

3.1 Basic model

The motion of a free-falling mass in a gravitational field
without resistance is given by the following two equa-
tions:

v̇ = −g, (6)

ℎ̇ = v, (7)
where g is the acceleration of the gravitational field.
The initial conditions v(0) = v0 and ℎ0 define the ve-
locity and the height of the ball at t = 0.
Until the ball hits the ground (ℎ = 0), we have a totally
continuous system, but at the bounce we have to treat a
discontinuous change of the ball’s motion.
In this first approach, we model this event by using
Newtons third law and a coefficient �, that describes
the loss of energy.
The velocities v− right before the bounce and v+ after-
wards are related as follows:

v+ = −� ⋅ v− (8)

Given that, we can start a new free-falling phase with
new initial conditions ℎ0 = 0 and v0 = −�v−.

Mathematical analysis

By solving the set of ODEs shown in Eq. (6) and Eq.
(7), we get

v(t) = −g ⋅ t+ v0, (9)

ℎ(t) = −g
2
⋅ t2 + v0 ⋅ t+ ℎ0, (10)

as solutions of the initial value problem (IVP). With this
equations, we can easily evaluate the time of the first
bounce, assuming v0 = 0

t1 =

√
2ℎ0
g
. (11)

And the velocity at time t1 is

v(t1) = −
√

2gℎ0 (12)

Given the relation from Eq. (8), we have now a solution
for the second free-falling phase and can evaluate how
long it lasts:

ℎ(t− t1) = −g
2

(t− t1)2 + �
√

2gℎ0(t− t1), (13)

t2 − t1 = 2�t1. (14)

Now it is obvious, that the durations of the free-falling
phases are related as followed:

tm − tm−1 = � ⋅ (tm−1 − tm−2) ∀m ≥ 3. (15)

From Eq. (14) and Eq. (15), we can derive a formula for
the time of the m-th bounce:

tm =

√
2ℎ0
g
⋅

(
−1 + 2 ⋅

i=m−1∑
i=0

�i

)
(16)

This is a geometric series and therefore it is limited if
� < 1:

t∞ =

√
2ℎ0
g

1 + �

1− �
(17)

Simulation Results

The simulation of the bouncing ball model is realized
in MATLAB, with the ode45 solver.

Tab. 1 Parameter and initial conditions for bouncing
ball model

v0 = 0 g = 9.81
ℎ0 = 10 � = 0.9

The simulation stop time of the simulation is t∞ from
Eq. (17). The results of the simulation run using the
defined parameters from Tab. 1 are shown in Fig. 12.

Fig. 12 Height and velocity in the basic model are de-
creasing over time

Fig. 13 Error of bounce times: simulation of analytical
results

In Fig. 13, the times of the bounces from the simulation
are compared to the analytically calculated times from
Eq. (16) and the error is shown.

Since the error is negative at the beginning, the times
of the bounces that the simulation estimates are later
than the exact timepoints, as long as the ball jumps
high enough. After about 15 bounces the error begins
to monotonically increase, which means that the sim-
ulation underestimates the duration of the free-falling
phase. The figure also shows, that the error does not
exceed 3 ⋅ 10−11, so the simulation is very accurate re-
garding this perspective.

3.2 Model with air-resistance

To extend the model in a first step, we introduce the
friction-constant � to describe the behavior of the ball
in an environment under natural atmospheric pressure
assumptions. The new equations are

v̇ = −g − � ⋅ v2 ⋅ sgn(v), (18)

ℎ̇ = v. (19)

In Eq. (18), sgn(v) has to be included, so that the fric-
tion force is always contrary to the direction of move-
ment. The coefficient � for the air resistance can be
calculated as

� =
1

2
⋅ CD ⋅ � ⋅

A

m
, (20)

where CD is the drag coefficient, which is 0.47 for a
sphere, � is the density of the surrounding medium, A
the cross-section andm the mass of the ball. In the sim-
ulation run we will compare the behaviour of the ball on
earth and on mars. The parameters that are different on
the two planets are the gravitational force constant and
the density of the atmosphere.

Tab. 2 Gravitational force constant and the density of
the atmosphere

Earth ge = 9.81 �e = 1.227
Mars gm = 3.693 �m = 0.015

Note, that these constants are only true for low altitudes.
We can now derive the friction constants �e and �m
from the densities of the atmospheres in Tab. 2 for a ball
with cross-section A = 0.02m2 and mass m = 0.3kg:

�e = 0.02 (21)

�m = 2.3 ⋅ 10−4 (22)

As in the basic model, the condition for the state-event
is ℎ = 0. The initial values for the new free-falling
phase are again ℎ0 = 0 and v0 = −�v− as described
in Eq. (8) and below.

Simulation Results

We now simulate the bouncing ball model with air-
resistance as described in Eq. (18) and Eq. (19) with
the set of parameters v0 = 0, ℎ0 = 10, � = 0.9 and
the values for the gravitational constant g and the air
resistance � (Tab. 2) for both, Earth and Mars.
The graphs in Fig. 14 show the height and the veloc-
ity of the ball on Earth and on Mars. We can observe

Fig. 14 Height and velocity of the model with air-
resistance

that the curve, describing the velocity is not linear, like
the one in the basic model, but a little bit bent, which
obviously comes from −�v2 sqn(v). It can also be
seen, that the maximum velocity of the ball is higher on
Earth, but the maximum height is lower. This is caused
by the much more dense atmosphere on Earth than com-
pared to the on Mars and so the friction parameter � is
much higher on Earth.

3.3 Model with spring-damper-system

Now we extend the basic model from section 3.1 in
another way, namely by introducing a spring-damper-
system for the bouncing phase. Previously, the bounce
just changed the set of the initial conditions for the
model of the free-falling phase, which consumed no
time. Now it is implemented as an additional state, so
we have two states the model can be in, namely the free-
falling state and the bouncing state. As we can see in

h

Fig. 15 Sketch of a ball using a spring-damper-system

Fig. 15, we have to introduce a new state-equation for
the deformation y of the ball. That brings us to the sys-
tem of ODEs for the free-falling state

v̇ = −g, ℎ̇ = v, ẏ = −k
d
⋅ y, (23)

with a spring constant k and a damping constant d. For
the bouncing state we have the equations

v̇ = −g + fc, ℎ̇ = v, ẏ = −ℎ̇, (24)

where fc = max((−kℎ−dℎ̇), 0) is the normalized con-
tact force between the ball and the ground. The contact
force always pointing in the positive direction of ℎ and
therefore it cannot be negative.
Similar to the first two models, the model has to switch
from the free-falling state to the bouncing state, if the
condition x + y = 0 is met. The condition for switch-
ing back to the free-falling state is fc = 0, that means
that there is no more contact between the ball and the
ground.

Simulation results

For the simulation of the bouncing ball model with a
spring-damper-system, we use the set of parameters in
Tab. 3.

Tab. 3 Parameter for spring-damper-system

g = 9.81 ℎ0 = 10 k = 106

v0 = 0 d = 500 y0 = 0

In Fig. 16 we can see the height and the velocity of the
ball and Fig. 17 shows the deformation of the ball.

Fig. 16 Height and velocity results for the extended
model

Fig. 17 Moment and quantity of deformation of the ball

This modelling strategy causes, that the bouncing ball
is stable with reference to fall trough the ground. More-
over, the model is much more related to the reality be-
cause the contact with the ground is conected to time.

4 Hybrid Electrical Circuit
Based on the problem definition of a class E-amplifier
in [5], also used in [6], a new electrical circuit is de-
signed. Simulation experiments and modelling tasks
are defined on the following system.

Fig. 18 Schematic of the switched electrical test circuit

In Fig. 18, a schematic of the system of interest is
shown. Assume R1 = R2 = 1kΩ, f = 1MHz and
Rmin = 1mΩ . The definition of this simulation project
is given in three items with several sub points.
In some tasks, the switch S1 is replaced by a time-
dependent resistor RS1

(t) with a time response de-
picted in Fig. 19.

Fig. 19 Time-dependent resistor for switch S1

Assume Roff = 108Ω, Ron = 10−4Ω, t1 = 2 ⋅ 10−7s,
t2 = 2, 5 ⋅ 10−7s, t3 = 4, 5 ⋅ 10−7s, and t4 = 5 ⋅
10−7s, where ti, i = 1, . . . , 4 are timevalues, measured
in seconds.

The diode in the electrical circuit will be implement us-
ing three different models.

Fig. 20 Diode characteristic: ideal switch

The first model, the simplest one, defines the diode as
an ideal switch with current restriction. The two states
are defined as followed:

∙ For a negative input voltage (U < 0) the current
through the diode is 0.

∙ For a positive input voltage (U > 0) the diode is
assumed to be an ideal conductor, but for simula-
tion the current is limited to I0 = 106A.

The characteristic curve of this simplest model is shown
in Fig. 20.

The second model differs from the first in the way that
a threshold UD of the input voltage is scheduled, shown
in Fig. 21. The two cases from the first model are de-
termined by U < UD and U > UD, with a threshold
UD = 0, 7V.

Fig. 21 Diode characteristic: switch with threshold

The last model is defined to design the current through
the diode via the Shockley diode equation, which is
given by

I(U) =

{
IS ⋅

(
e

U
UT − 1

)
, U ≥ 0

0, U < 0
, (25)

with the saturation current IS = 10−12A and the tem-
perature voltage UT = 25mV, by assumption of con-
stant ambient temperature. The characteristic curve of
the Shockley diode equation is drafted in Fig. 22.

Fig. 22 Diode characteristic: sketch of Shockley diode
equation

To calculate the adequate inductance L and capacity C
the formulas

q =
2�fL

R1 +R2
and f =

1

2
√
LC

, (26)

for a given quality factor q = 40 are used.

In the following sections some assignments will be
solved with different diode models and in some tasks
with the time-dependent resistor Rs1(t). The different
assignments of tasks will show different behaviour of
the defined test circuit for different models and switch
combinations.

4.1 Calculation of the eigenvalues of the system

In this section the switch S3 is assumed to be closed.
The state space model of the electrical circuit is repre-
sented by

Cẋ+Ax = Bu, (27)
where C,A ∈ ℝ2×2 and u, x ∈ ℝ2. If C is invertible,
the equation can be expressed as

ẋ = −C−1Ax+ C−1Bu. (28)

The eigenvalues �1, �2 ∈ ℂ of the system are the eigen-
values of the matrix C−1A.

The eigenvalues of the electrical circuit are calculated
in three different settings:

1. S1 and S2 are assumed to be open, the resulting
curcuit is a standard oscillating curcuit in serial
connection.

2. S2 is assumed to be open and S1 is replaced by the
time-dependent resistor depicted in Fig. 19. For
the different sections of the characteristic curve of
the time-dependent resistor, the curcuit is a piece-
wise linear model.

3. S1 is assumed to be open and S2 is assumed to be
closed. The diode model has to be linearized in a
operating point (Ud, Id), so the linearized equiva-
lent resistance is Rd = Ud

Id
= 20Ω.

Tab. 4 Eigenvalues of the system for different scenarios

Setting Section (�1, �2)T

1
(
−0, 0785 + i ⋅ 6, 2827
−0, 0785− i ⋅ 6, 2827

)
⋅ 106

2 [0, t1]

(
−0, 0811 + i ⋅ 6, 2827
−0, 0811− i ⋅ 6, 2827

)
⋅ 106

[t1, t2]

(
−0, 0817 + i ⋅ 6, 2827
−0, 0817− i ⋅ 6, 2827

)
⋅ 106

[t2, t3]

(
−0, 0008
−5, 0265

)
⋅ 108

[t3, t4]

(
−0, 0911 + i ⋅ 6, 2825
−0, 0911− i ⋅ 6, 2825

)
⋅ 106

3
(
−0, 0008
−4, 9280

)
⋅ 108

The results of the eigenvalues for the three different set-
tings are shown in Tab. 4. In setting two, the linear
rising and falling of the time-dependent resistor is im-
plemented via a linear equation, which is sampled with
a sampling rate of ts = 10−8. The eigenvalues differ
marginal, so only the first eigenvalue is shown in the
table as a representative. In all settings, the system is
stable because of Re(�i) < 0, i = 1, 2.

4.2 Dynamics depending on the time-dependent
resistor

In this section, the switch S3 is assumed to be closed
and S2 is assumed to be open. So the simulation is only
depending on the state of the switch S1 which is given
by the time-dependent resistor (Fig. 19). A quantity of
the linear slope is the slew rate, which is defined by

Δt = t2 − t1 = t4 − t3. (29)

In this task the slew rate is varied, so that the charac-
teristic curve of the time-dependent resistor is discon-
tinuous or the slope is parallel to a bisectrix, i.e. the
corresponding angle is �

2 and �
4 . The input voltage is

assumed as

u(t) = U0 ⋅ sin(2�ft), (30)

with U0 = 15V and f = 1MHz. For both slew rates,
the output current from the source through R1 and L is
depicted in Fig. 23.

Fig. 23 Characteristics of total current through the cur-
cuit for slew rate of �/4 and �/2

4.3 Comparison of the different diode models

Assume S2 and S3 to be closed and S1 to be open. Each
of the three diode models is used to simulate the elec-
trical circuit. For each simulation, the simulation time

is measured. The characteristic curve of the current of
the source is shown in Fig. 24.

Fig. 24 Total current characteristics for diode model as
an ideal switch (left top), as a switch with threshold
UD (right top) and the diode model via the Shockley
equation (bottom)

The consumed time for simulation with each diode
model is listed in Tab. 5.

Tab. 5 Simulation time for each diode model

diode model simulation time [s]
1 154.608431
2 91.826230
3 131.766537

4.4 Hybrid scenario

In this subsection S2 and S3 are assumed to be closed
and S1 replaced by the time-dependent resistor RS1(t).
The diode is modeled as a switch with threshold (Fig.
21) and let Rmin = 0, see Fig. 18.

The voltage on the time-dependent resistor is propor-
tional to the resistance value. This voltage is the con-
trol parameter of the diode, control in the sense that this
parameter decides the state the diode. This relation is
shown in the voltage curve depicted in Fig. 25

5 Conclusion
The examples in this paper show that hybrid models can
consist of different states and that each of these states
has to be described by different physical equations. The
degree of freedom in each of these states can differ. In
order to determine when the state has to be changed, it
is necessary to evaluate the time of the state event as ex-
act as possible. Therefore, simulation of hybrid models
requires simulation software with event handling func-
tionality. Through the experiments described in this pa-
per it has been shown, that MATLAB and SIMULINK
are suitable tools for hybrid modelling. The different

Fig. 25 Voltage characteristics from the diode in hybrid
scenario

ways of solving simulation tasks shown in this paper
depict the flexibility of these systems.

6 References
[1] Mathworks. MATLAB 7 - Mathematics. The Math-

works Inc., March 2010.
[2] Mathworks. SIMULINK 7 - User’s Guide. The

Mathworks Inc., March 2010.
[3] H. Ecker. The bouncing ball problem - modelling

and simulation aspects. SNE Simulation News Eu-
rope, 34:9 – 14, 2002.

[4] P. Fritzson. Principles of Object-Oriented Model-
ing and Simulation with Modelica 2.1. John Wiley
and Sons, 2004.

[5] N.O. Sokal and A.D. Sokal. Class e - a new
class of high-efficiency tuned single-ended switch-
ing power amplifiers. IEEE Journal of Solid-State
Circuits, SC-10:168–176, 1975.

[6] N. Viertl and F. Breitenecker. Comparison 3 - anal-
ysis of a generalized class-e amplifier. SNE Simu-
lation News Europe, 27:40, 1999.

