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Abstract 

This contribution highlights two aspects of the classical bouncing ball modeling 
and simulation. On modelling level, the ball characterises more a big bubble 
than a ball, so that drag forces cannot be neglected and 
impacts must be modelled by distortion, and 
additionally the implication of the big-sized ball for 
different atmospheres (comparing Earth and Mars). 
What looks like fun – may be used for education in 
modelling and simulation, and may become serious 
science once. (http://saturn.astrobio.net/pressrelease/63/ 
having-a-ball-on-mars) 
On implementation level, the presented MATLAB/Stateflow version is a purely 
discrete approach: fly and distortion are modelled by state charts, updated by 
triggered stepsize events which drive an ODE solver. Switching between impact, 
distortion, and fly is triggered by state events following a predictive event 
finding strategy: as the event function is the state ball height, also first and 
second derivative of event function are known. Thus allows approximating the 
event function by a polynomial of first order or second order near the impact, 
the known zero of which may be used for adjusting a smaller step size, and in 
last consequence, to give the impact time. The idea may be generalized for 
contact problems in mechanical systems. 
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1 Introduction 
A Google-search for ‘bouncing+ball model’ results 
in about 550.000 hits – raising two questions: what 
else can be published on this topic, and why this 
small model makes so much rumour? 

The answer to the second question may be the fact, 
that the bouncing ball model (BBM) is not only a 
model for a bouncing ball, it is the simplest but 
most realistic illustration for the concept of entropy 
change as a result of the redistribution of energy in 
a system to available microstates in case of a state-
dependent rebound. In simple versions, the ball is a 
point particle, more complex ball models design the 
ball as agglomeration of particles, which are 
hooked (with spring and damper), the bounce itself 
can be seen as simple event, changing velocity 
discontinuously, or as begin of distortion of the ball 
(with spring and damper); whereby one- or more-
particle ball models are used. And from application 
viewpoint, the BBM is a simplification from rather 
complex processes, like airbag dynamics, etc. From 
classification point of view, the BBM is the 
simplest model for contact problems, which all 
have the same problem: the condition for the 
contact is state-dependent and the state is not 
known analytically, so that contact time cannot be 
determined in advance. 

The answer to the first question may be the 
assumption, the presented approach is partly a 
novelty.  

The following considerations highlight two aspects 
of BBM simulation. On modelling level, the ball 
characterises more a big bubble than a ball, so that 
drag forces cannot be neglected and impacts must 
be modelled by distortion, and additionally the 
implication of the big-sized ball for different 
atmospheres (comparing Earth and Mars). What 
looks like fun – may be used for education in 
modelling and simulation, and may become serious 
science once. 
(http://saturn.astrobio.net/pressrelease/63/having-a-
ball-on-mars) 

The second aspect deals with the implementation of 
the BBM. Classical implementations follow ODE 
modelling with state events modelling. Accurate 
state event handlers are forced to intervene into the 
ODE solver, to step back in time and/or to calculate 
with physical wrong equations - in order to 
determine the impact time by iteration or by 
interpolation. The presented implementation is a 
purely discrete approach: fly and distortion are 
modelled by state charts, updated by triggered 
stepsize events, which update the state by an ODE 
algorithm of the user’s choice. Impact/begin of 
distortion and end of distortion/restart of fly are 
triggered by events, which switch between the fly 
model with drag force (BBFM) and the distortion 

model (BBDM), and which are determined 
approximately in advance.  

The idea behind is the fact, that in case of BBM, 
not only the event function can be evaluated, but 
also its derivative(s). The event function, the zero 
of which must be found, is the ball height – a state 
variable; but also the velocity – another state – is 
available, and, if necessary also the acceleration – 
the derivative of a state. This allows approximating 
the event function by a polynomial of first order or 
second order near the impact, the known zero of 
which may be used for adjusting a smaller step size, 
and in last consequence, to give the impact time. 
This contribution illustrates a basic implementation 
of the suggested state chart approach and event 
algorithm in MATLAB/Stateflow®. The idea may 
be generalized for contact problems in mechanical 
systems, where these derivates are available.  

A bouncing ball is a hybrid model, and it is an 
example whose model consists on the one hand of a 
motion equation and on the other hand of a force 
equation. This paper introduces the ball and its 
bouncing behaviour with its drag force.   

In aerospace science there are some models with 
airbags, whereas they have a model which is similar 
to a bouncing ball hybrid model, which - with some 
modification - can be used as a tiny part of a 
complex aerospace mission. The idea of landing 
exploration robots on other planets (Mars, for 
example) opens up new horizons in knowledge and 
science when such operations can be achieved in 
reality, for example MER atmospheric entry [1, 2]. 
In the final phase of landing of some aerospace 
exploration robots, the robot (capsule), which is 
centred in airbags with definite stiffness and 
damping characteristics, should be launched (near 
to the ground) from a parachute (or dropped from a 
beam). In this case, the destruction of the robot or 
lander, which is in the airbag, must be avoided.  

The content of this paper below is not related to any 
aerospace applications; it merely introduces a very 
simple preface example to describe the model of a 
bouncing ball on Earth and on Mars. 

2 Model Description 
The first part of the simulation algorithm describes 
the kinematic relationships of the ball (falling of the 
ball). The two important relations are the velocity 
and acceleration differential equation. If the ball 
falls from a height ,h  then the velocity is  
 

vh =&                                                                   (1) 
 

where v  is velocity, and acceleration a  is given as 
av =&                                                                   (2) 

 
The second part of the simulation algorithm 
concerns the dynamic equation of the ball.  



 

In this part, drag force is considered. To determine 
drag force, the density of the atmosphere needs to 
be found, to compute the density of the atmosphere 
it is necessary to evaluate the temperature and 
pressure of the atmosphere [3, 4]. So the temp-
erature θ (in degrees Celsius) on Earth can be 
defined by SI units as follows 

 
he ⋅−= 00649.004.15θ  

(3) 

where h  is given in meters. The temperature of the 
atmosphere is used to calculate the atmospheric 
pressure. The pressure of the atmosphere P  is 
given in kilo-Pascal units. The equation of the 
pressure of the atmosphere on Earth is given by  
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The equation of the density of the atmosphere ρ  
on Earth (5) can be seen below. 
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The unit of ρ  is 3/ mkg . These equations for 
Earth are valid for the troposphere layer or altitudes 
less than 11000peh  meters. The equations of 
temperature pressure and density for Mars are 
defined with the following functions: 

 
hm ⋅−−= 000998.031θ  

(6) 
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The equations for Mars are valid for altitudes less 
than 7000ph  meters. These equations can be 
redefined for higher altitudes. Now the density of 
the atmosphere can be substituted in the drag force 
equation. The drag force equations are given with 
the following relations for Earth and for Mars [5]: 
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The atmosphere friction force establishes the force 
against motion direction. The velocity of the ball on 
Mars and on Earth is given by mv  and ev . The 

parameter A  is the cross section area, and DC  is 

the drag coefficient. Drag coefficient DC  depends 
on the shape of the ball (or airbag).    

The gravitation force (gravity or weight equation) 
without drag for falling objects is given by 

 
gmam ⋅−=⋅  

(11) 

This equation with drag force is 
 

gmDam ⋅−=−⋅  
(12) 

If a ball falls and encounters the ground, then a 
mass-spring-damper model is used to describe the 
dynamic behaviour of the ball. 

The following figure (Fig. 1) shows the ball before 
contacting with the ground, 
 

 
Fig. 1: The ball before contacting, no deformation 

 
The next figure (Fig. 2) shows the ball when 
contacting with the ground. 
 

 
Fig. 2: The ball when contacting with the ground 

The elastic force of the ball (spring character) can 
be calculated as  

( )rhfe −⋅−= κ               rh ≤  
(13) 

whereκ is the elasticity constant of the ball, h  is 
altitude, and r is the radius of the ball. The viscous 
damping character of the ball is described by 
following the damping force model below 



 

vfd ⋅−= β                       rh ≤  
(14) 

in which β  is the damping constant. Three final 
equations can be combined with gravity equation, 
and the result is elaborated as follows: 
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3  Implementation and Simulation 
The presented implementation is a purely discrete 
approach: fly and distortion are modelled by state 
chart(s), updated by triggered step size events, 
which update the state by an ODE algorithm of 
user’s choice. Impact/begin of distortion and end of 
distortion/restart of fly are triggered by events, 
which switch between the fly state with drag force 
and the distortion state, which are determined 
approximately in advance. For simplicity, fly and 
distortion model can be combined, when switching 
between different forces [7, 8]. 

For a-priori approximation of the impact/switching, 
the fact is used, that in case of BBM, not only the 
event function can be evaluated, but also its 
derivative(s). The event function hevent(x,t), the zero 
of which must be found, is the ball height h(t) – a 
state variable (minus ball radius r); but also the 
velocity and if necessary also the acceleration are 
state variables or derivative variables and available 
in the model. 
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This (Eq. 16) allows approximating the event 
function by a polynomial of first order or second 
order near the impact: 
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The zero tae1 of the polynomial of first order may be 
used for adjusting a smaller step size, and in last 
consequence, as approximation for the event time 
hevent. 
 

While the first order approximation requires in 
general some case-by-case analysis because of 
concave/convex type of h(t), a second order 
approximation takes into account convexity of h(t), 
but is more complex. The following equations show 
the definition of a second order system: 
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(18) 
 
The BBM in this paper is implemented and 
simulated with the simulation tool MATLAB/State-
flow®.  

The simulation algorithm proceeds with two states. 
State transition depends on the altitude of the centre 
of the ball. If altitude of the centre of the ball is 
smaller than the radius r of the ball, then the force 
equation is a mass-spring-damper model, and if the 
altitude of the ball is greater than the radius of the 
ball, then the gravity drag equation is considered in 
a hybrid simulation algorithm. Drag and damping 
force depend on velocity. When velocity falls to 
zero, then these two forces are reduced, and fall to 
zero too. 

The model of the bouncing ball is extended with 
equations of temperature, atmospheric pressure, 
density of the atmosphere and drag force, so the 
model structure is a hybrid model. In Fig. 3, an 
abstract implementation model for BBM on Earth is 
shown. 

The simulation parameters are chosen in metric 
units as follows [6]: 

Fall initial altitude mh 5=  

Initial velocity 
s
mv 5.2=   

Mass of ball kgm 200=  
Radius of ball mr 5.2=  
 
Cross section area 2625.19 mA =   
 
Drag coefficient 47.0=Dc  dimension less 

Spring constant 
s

kg250=β  

Damping constant 240.1
s
kge +=κ   



 

Earth’s gravity 280665.9
s
mge =  

Mars’ gravity 2693.3
s
mgm =

 
Euler number 84582.71828182=e   
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Fig. 3: simulation algorithm structure as an abstract 
model on Earth. The state chart defines the hybrid 

model switch 

Mars’ gravity 2693.3
s
mgm =

 
Euler number 84582.71828182=e   
 

3.1 Simulating with Stateflow 

The state update is explicitly implemented by an 
Euler algorithm, as shown in Fig. 4. Within the 
state chart BouncingBall, an event graph switches 
between fly and distortion.  
 
The update is driven by external events (Edge 
Sense), synchronised with step size Ts. In the 
synchronising state chart BouncingBallUpdate, step 
size Ts may be adjusted with respect to the 
approximated event time tae1 or tae2, so that the 
tk+1 = tk + Ts  <  tae1 (tae2) or may be set to Ts  =  tae1 - tk 
or Ts  =  tae2 - tk (matching of approximated event 
time). 

 
Fig. 4: State chart bouncing ball model for Earth 

using MATLAB environment 

 
Fig. 5: State chart bouncing ball model for Mars 

The hybrid algorithm for the BBM on Mars is 
implemented in the same way (Fig. 5). 
 
For comparison of results for Earth and Mars, both 
models have been implemented in parallel – Fig. 6, 
using the superstate construct of Stateflow. Both 
superstates are triggered by a pulse generator with 
frequency/step size Ts, which can be adjusted from 
the inner state charts as given above. 
 

 
Fig. 6: Block diagram of the overall simulation 

model of bouncing ball using Stateflow. 

The variables of altitude, acceleration, force 
balance, drag force, pressure of atmosphere and 
density of the atmosphere and temperature in this 
example are calculated in SI units, so all the results 
of the simulations are shown in SI units. 
 
The following figures show altitude (Fig. 7), 
velocity (Fig. 8), and acceleration (Fig. 9) for BBM 
simulation comparing situation on Earth and on 
Mars. The drag forces for BBM simulation on Earth 
and on Mars are presented separately in Fig. 10 and 
Fig. 11, respectively. 
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Fig. 7: Altitude of the bouncing ball on Earth (blue) 

and on Mars (green) 
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Fig. 8: Velocity of the bouncing ball on Earth and 

on Mars 
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Fig. 9: Acceleration of the bouncing ball on Earth 

and on Mars 

4 Summary and Conclusion 
This model is presented to demonstrate the 
flexibility and extensibility of state charts and 
differential equations as a hybrid combination in 
the field of physical modelling. The Bouncing Ball 
can be used for various purpose of teaching or basic 
research, the advantage of the model is the 
simplicity of the state flow structure and the 
comprehensible physical system, which can be 
connected and redefined with any type of linear or 
nonlinear equations. 
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Fig. 10: The drag force of a bouncing ball on Earth 
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Fig. 11: The drag force of a bouncing ball on Mars 
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