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Abstract

Standard approaches to simulating epidemics otfinigs diseases include the
classic SIR-model and agent based simulations. Hemahteresting application
for modelling and simulation are studies of the aiywcs of whole parts of
health care systems and their reimbursement scheWes show how to
integrate the transmission of infectious diseast®s a model of this type. It is
agent based and consists of three main agent tipad¢ients, Medical Providers
and Medical Problems. The latter represents diffteckseases which patients
can contract. Each patient implements a statedbamtvery medical problem
type. These statecharts model the random generafionew diseases and
corresponding medical problem objects which contliekase progression and
the treatment pathways a patient takes. A centirldalth Market” object
manages provider search of the patients. As an @eanve integrate influenza
as an infectious disease into the model with a re¢épaobject type
“InfluenzaEpidemic” that stores the characteristafs every new epidemic
during simulation time. Transmission of the disetd@s place between agents
which are connected by a network based on spal@iions. Each agent stores
his past infections so he does not get the sanus gtrain twice. Experiments
show that this resembles the behaviour of SIR-n®dat that this model can
provide insight into the impact of epidemics on thidization of the health
service system and its reimbursement.
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. 2.1.1 Patients
1 Introduction
] ) ] ] ] . We model a patient population which is spatially
Infectious diseases and epidemics are a major tfpic yistributed on a map of Austria. The simulation

health services research. Unlike chronic illnessggjtialises each patient inside a polygon symbalizi
which are often caused by general morbidity, aghe Austrian border.

unhealthy lifestyle or aging, an epidemic spreads . . . o
through social contacts between humans and affedtswas not possible to do simulations of eight ioil

peop|e of all age groups, especia”y children. agents, as would be Austria’s population, becalhise t
consumed too much memory. With fewer agents the

Infections create a positive feedback loop whicRjistances on the map between patients and medical
dominates th_e system until not enough.susceptlbﬁ%(oviders become unusually large. One has to pay
people remain to allow further spreading of th&gention to this problem. Additionally the ratid o
disease. New cases can emerge dramatically inra sh@edical providers and patients must be similatht t

period of time and lead to organizational probléaTs g4 ratio. For example for 10.000 patients we ehos
society (capacity of medical providers, absente@sm mode| 150 general practitioners.

work etc.) as well as increased mortality. ] ) .
Patients in the model have age and sex as variables

Dynamic models of infectious diseases have a lonfhey are initialised according to the corresponding
tradition. One of the most famous is the SIR-maxfel gjistributions from official statistics. The modesas
Kermack and McKendrick which separates thenese variables to calculate the dying probablité

population into  homogenous compartments  Ofach patient, as the population changes dynamically
susceptible (S), infected (I) and recovered (R)

individuals. However, such global models ignordJsually the generation of diseases (and probalsly al

spatial effects and the possible behaviour dféatment and reimbursement) would depend on age
individuals [1]. and sex too. However in the case of modelling just

] ] ] ) ) influenza we ignore the influence of both.
In agent based simulation, the infectious d'seaslﬁealistically the immune answer is weaker for

spreads locally through interaction of agents whiCBhjldren and the elderly. With reliable data avaiga

represent individuals. ~Approaches reach frorghe model could incorporate this fact easily.
modelling contact networks between agents [2] to

explicitly integrating submodels of households andach patient implements a statechart for every tfpe

workplaces [3], but to our knowledge none of thetpamedical problem. The simplest version of these

modelling studies implemented structures of thdthea Statecharts would have two states, one where thet ag

services system, like service providers (e_gdoes not have the medical problem, and one where he

physicians) and their reimbursement. has actually developed it and has not recovered yet
) ) ) (the according statechart for influenza is showRim

In this study we show how to integrate an epldemlg)_ However, these statecharts could be more

influenza model into an existing agent basedymplicated, for example if the medical problem can
framework for modelling outpatient health care andiayt in different disease stages.

effects of different reimbursement systems in Aastr

[4]. In the original model people develop medicaln general the modelling of the development of each
problems with certain probabilities, but it doest nodisease with a simple statechart reflects the ttaa
contain reasons for the emergence of diseases (lif¢¢ main fact that is important at the patient lesef
physiologic attributes of the agents, or interietapf he or she has this specific disease or not. Itos n
illnesses between different agents as in the cése Rgcessary to implement further information aboet th
infectious diseases). However, it is possible td addiseases, their progression and their treatmerien

these features to the existing model structure. patients themselves, but in own medical problem
objects.

2 Methods 2.1.2 Medical Problems

2.1 Model of the Health Service System The medical problem objects implement specific

The basic model — implemented in AnyLogic 6.5.0, aipformation about the disease, for example disease

object-oriented multi-paradigm simulator from xgprogression and possible treatment pathways in the

Technologies, based on the Java programmi althcare system, with help (.)f statechgrts_. They a
language - consists of three main agent type _odelled as agents because in AnylLogic just agents

“Patients”, “Medical Providers® and “Medical ave message passing features that we use for the

Problems” (typical medical problems are, for exasmpl medical problems. When the patient develops a

acute diseases like influenza or chronic healt] edlct:atl prok?lemtr(]the corrtejpondlngt; state(iﬂart ave
problems like hypertension). The main idea is th € state where the agent does not have the djsease

patients randomly develop new medical problems. ty?as,:s assigned an instance of the specific problem



might  automatically  prescribe  neuraminidase
Influenza inhibitors (like Oseltamivir). Furthermore certain

@i)PaSTI“ﬂ”E“ZES medical providers might not be capable of providing
some services, for example physicians that do not
influenza [] Susceptible have a device for sonography would not offer

| sonographies to their patients. Further iteratioinhe

w A i model could handle this with a list of possiblevasgs
for every medical provider.
i
F Infected1 1 For handling of their patients providers have two
| queues with different priorities, where the patiecén

register themselves: “queue” and “queueToday”.

. . . o Medical Providers treat all patients in “queueTdday
Fig. 1 Statechart of influenza infection inside the 5 the same day and before all patients in the abrm

patient object. Collection variable for past infens queue. This is important for modelling diseasesrehe
and object influenza [..] (which stores an object o emergencies can occur. Each queue is served

type Influenza when an infection takes place).  according to the First In, First Out (FIFO) prineip

The problem classes reflect the idea that eactasse Providers have their working capacities for eacy da
has its own attributes and that disease progressidn Of the week stored in an array called “workingFar.

treatment pathways are characteristic for differel@se run we set the capacity per day (integer sptoe
illnesses. be uniformly distributed on the interval [5, 10]h&

. i o . working capacities signify how many patients a
A patient infected with influenza, for instance, wia provider can treat per day.

develop the need for a first consultation from a

general practitioner. After this consultation thatuld 2.1.4  Patient-Provider Interaction

prpwde him with medical services or medlca'uo_n, h1edical providers and patients are spatially rarigom
might need a blood test at a laboratory (for chegki gistributed on a map of Austria. With appropriatead

it is really an influenza infection) and optionally istributions that allow agglomerations (regionghwi
second consultation. higher agent density) would be possible too.

In the model a *Need” statechart maps thesg, reqjity several criteria influence patient's pider

possibilities in the form of one or more treatmenteoarch To keep it simple we just use the provider
pathways. Each state symbolises that the pati@Ue gisiance to the patient to determine the patients

consultation of a medical provider. Additionally itpreferred provider of a particular provider type.

contains information on _the. possible provider typegowever patients do not search directly for a plew;
(for example a consultation in the treatment paihway, they send a message with the particular provide
could be possible at a medical provider of typeegehn type that they want to consult to a global

practitioner or of type internist) and on “serviceqeaithmarket” object. This object returns a proeid
packages”. Each service package contains a list gf {he appropriate type with an acceptably small
services. At consultations the medical providefisiance to the inquiring patient.

accounts for the services of exactly one service _ . .
package. Further model iterations could implement far more

_ .. complicated provider selection strategies just by
As an example, service package 1 could contain jugfipstituting the “HealthMarket” object. This would

the usual lump compensation, whereas Servicgioy a real “market’ situation where on one hand

package 2 would contain additionally an intramustul yatients have a need and on the other hand previder
injection. Different service providers (for exam@é offer different treatment styles and capacities for

different types) can choose different service pgeka treating patients (as the required time might be a
for the same disease. factor in selection of a provider). Thus we suggest
2.1.3 Medical Providers further research on factors influencing patient’s

] ) selection of medical providers.
The medical provider agent class represents all

medical providers that have a contract with publiéh the model, patients store providers that theyeha
health insurances in Austria, for example phystgjanfound through “HealthMarket” as their preferred
laboratories or other specialists working in heatihe.  Providers. They will just consult another providér

The “type” parameter in this class indicates théheir preferred one cannot treat them with therdesi

particular type of the provider (e.g. generaPrioriy.

practitioner, internist). If patients have a need for treatment and haveechos

Additionally there can be parameters that influencd Particular provider they register in one of resvice
treatment decisions of providers. In the case d¢fueues. Medical providers will treat people froraith
influenza, not every general practitioner or intsrn queues until they reach their daily limit as givien



“workingFor”. After treatment the patient receivas accordingly to the change di/dt. Of course thisngea
message that he has been treated and all stateofartis continuous, but agents can only be infected mne
his medical problems that need a consultation isf thone. Altogether this is not a natural solution.

provider type can transit to the next state inrthe

treatment pathway. Therefore (and for reasons described in Sectiowé),

have chosen to incorporate spatial relations and
individuality of the agents for the disease

The easiest wav to implement influenza e idemictransmission. The statecharts inside patients which
y P P Model disease generation consist of the states

into the_model wom_JId be to_I_e_t patients randomlMSusceptible” and “Infected”. The state “Recovered”
develop influenza with probabilities dependentbat .=~~~ """ : .
is implicitly modelled because a collection var@bl

time of the year, as most cases of influenza oecalr stores past influenza epidemics that infected genta

least in Austria — in winter during the first weets . : . . .
i Agents develop immunity against all influenza virus
the year. For a model that concentrates mainly on>_. . .
strains they have been infected with.

reimbursement and considers many different diseases

this is a useful approach. The influenza disease object implements both a

However, in this paper we want to couple the mod s1tatechart that models disease progression and a
' Statechart that controls the treatment pathway. The

with a classic SIR-type epidemic model. Therefare a,. . ) )
" ; - . - disease progression states are: Asymptomatic (the
additional object type “InfluenzaEpidemic” repretsen patient is infected, but has no signs of infectiond

Et? gilﬁglar influenza epidemics with different VITUS cannot infect others), Asymptomaticinfectious (the

Each time the event “startEpidemic” is
scheduled it creates a new instance of the epidemic

2.2 Implementation of an Epidemic Model

patient can infect others, but has still no sigrfis o

infection), Symptomatic (the patient develops

The epidemic object could implement an SIR-modedymptoms and notices his disease) and Nonlinfectious

with the well-known differential equations, whichea (the patient still has symptoms, but is not infeas$

shown in Eqg. (1). anymore). The timeouts until state transitions are
shown in Tab. 1.

9. _srso

dt —_ :
dl DiseaseProgressicn
—- =4l -gl 1)

dt m -
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dt Y

As the agent part of the model should simulateast!
the progress of the disease and its treatmentdch e
agent individually, we do not need the part of the
differential equations where infected patients vecp
so the continuous equations would just control the Y
new infections of agents. lSy’Tptc-m

- 7
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Tab. 1 Timeouts of state transitions between
consecutive states of disease progression (Asyfmp.In
= Asymptomaticinfectious). The transition to thatst

Symptomatic takes place after one day. The other
timeouts are uniformly distributed.

Y
( MonInfectious |

Original state | Destination Timeout
Asymptomatic Asymp.Inf. uniform(0, 2
Asymp.Inf. Symptomatic 1 Fig. 2 Statechart of the disease progression of
: — - influenza. Patients are not instantaneously infesti
Symptomatic | - Noninfectioug  uniform(3, 5 Just in the infectious state (asymptomatic and
NonInfectious Final State uniform(4, 9 symptomatic) they may infect other individuals.

Patients potentially transmit the disease as loag a

This coupling has serious disadvantages. For dwe, tthey are in state “Infectious” of the influenza
performance is weak because all event conditions Rfogression statechart. A cyclic event — with a
equation solver. Furthermore, the model has to pid@ys — sends a message with a reference to the

susceptible agents randomly to infect thenRarticular influenza epidemic object to anothersper
that is connected with the transmitter. The corinast



in the model form a small-world network, i.e. mostNote that these treatment pathways are by no means
connections link nearby agents, but some are randoampirically attested; they are just for illustrativ
Each agent has 20 connections, 95% of which connqmirpose. For example, prescription of antibiotics
neighbours. might be far more common in influenza-like-illnesse

than prescription of neuraminidase inhibitors.

ﬁ?eémﬂorte\% rz?)rdaer??rz?erct(ii/fit eg(s:htth“:gtrggﬂigf thﬁowever antibiotics have no effect on the influenza
Y. y P virus, whereas the latter can shorten the lengtthef

Znsiun?‘gzzzfrl\“rr:gfsescgog [;r?eséifai?ttlsgiu%a%?r:ﬁféﬁ infection by about a day on average [5]. Therefoee
ge. rPatient transits in the disease progression statech

is 0.05, which means that 1 out of 20 infectio . X .
) X one day faster if he or she receives neuraminidase
messages lead to an actual infection. inhibitors

There are three different possible treatment pagswa The java class “Services’ creates a HyperSQL
1. The patient has one consultation with alatabase at runtime. Additionally it stores pricés

general practitioner. The general practitioneservices and handles writing of services to the

receives a lump compensation, and he may olatabase (together with date of service, patierinid

not may prescribe neuraminidase inhibitors. id of the provider). The methoskrvicesCosts( long
roviderld, Service service) in the Services class
alculates total costs per service type for a padr
rovider from the database. For most services this
ives the amount of services multiplied with the
service price, however lump compensations are
3. At the first consultation the generalcounted at most once per quarter, provider anemati

practitioner takes a blood sample and sends it

to a laboratory for a test for the influenza3 Results

virus. After this the patient comes to the . ) . .
general practitioner for a second consultatioroiMmulations took place with 10.000 patients. Theeba

run shows the typical SIR-type behaviour (Fig. 3).
oo Here the second epidemic took place one year after
7,000 | f’\ the first. Additionally, the output incorporateseaage

‘ and maximum queue sizes (Fig. 4) and reimbursement
| of the providers (of course this reimbursementss g
= partial one as it results from only one disease).

2. The patient waits longer than 3 days for hi
first consultation. Then he deletes himsel
from the queue of the general practitioner an
just waits until the end of his influenza.
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Fig. 3: Infected individuals of two consecutive 3,000 1
influenza epidemics. 2000 1

1,000 4

a
) 20 40 60 a0 100 1z0 140 160 130 200
\ — Infected individuals

\\ ; Fig. 5: Infected individuals of one epidemic if jeaits
]‘ do not develop immunity. Damped oscillations occur.

5 ﬂ‘ l' If the agents do not store the epidemics they have
‘ already had (essentially an elimination of the

H “recovered” state) we get a different picture with

| : oscillations like in Fig 5. In general, the maximum

Al | queue sizes of the general practitioners are difees

’ 0 50 100 150 200 250 300 350 400 450 500 the average queue Slzes

— GP average queUs size — GP maimum queve size

The cost information for general practitioners (Big
Fig. 4: Patients in the queue of general practisR-  and Fig 7.) and laboratories shows that in the rsgéco
average and maximum queue sizes during the tWoscenario overall costs rise almost linearly oves th
influenza epidemics. whole simulation time, whereas in the base run the
rise of costs is by far not so tremendous.
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Fig. 6: Base run, development of overall costs for
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during two influenza epidemics.
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Fig. 8: Infected individuals in parameter variation
experiment with six different values for probalyildf
neuraminidase inhibitor prescription.

Further possible experiments with the developed
model are simulations with limited capacity of
providers, simulations of vaccination strategiesl an
implementations of different strategies on micreele
(strategies of doctors) and macro level (system
strategies). Additionally the infection probabiliper
contact could be varied or calibrated with reahdat

Tab. 2 Overall costs for lump compensations (Costs
LC) and neuraminidase inhibitors (Costs NI) in the
parameter variation experiment. Probability of
neuraminidase inhibitor prescription varies fromo@
with steps of 0.2.

Fig. 7: Simulation without immunity. Development of NI_probability Costs LC Costs NI
overall costs for lump compensations and 0.0 160854.7 0.0
neuraminidase inhibitors during one epidemic which
never dies out. 0.2 160347.9 28805.2
0.4 161162.4 63185.6
One interesting effect is the influence of
neuraminidase inhibitors on progression of an 0.6 160402.2 82375.6
epidemic. Therefore we conducted a paramdter (.8 159967.8 114736.0
variation experiment where the probability of
neuraminidase inhibitor prescription varied frontoO 1.0 160782.3 147500.4
1 with steps of 0.2. Results (Fig. 8) show that
neuraminidase inhibitors can at most slightly deday
epidemic. Tab. 2 lists costs for lump compensation% References

and neuraminidase inhibitors in

variation experiment.
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