
ANALYSIS AND COMPOSITION OF DISCRETE
EVENT ORIENTED SIMULATIONS USING

DISTRIBUTED WEB TECHNOLOGIES
Aman Atri 1, Felix Breitenecker 1, Katharina Breitenecker 1

1Vienna University of Technology, Institute for Analysis and Scientific Computing
Wiedner Hauptstrasse 8-10, 1040 Vienna , Austria

aman.atri@tuwien.ac.at(Aman Atri)

Abstract

The rising facilities of higher level protocols for internet communication have
provided successful implementations in current web development. Web applica-
tions are not merely meant to display information and content, but work inter-
actively using standardised conventions. These technology is commonly used in
many social platforms where different kind of applications interact together re-
gardless of the actual programming language they were written in.
The purpose of this paper is to use these communicaton layers for a platform inde-
pendent web based e-learning system for discrete event oriented simulation. The
software shold be used for academic teaching purposes. The server-sided simula-
tion is basically a multi-tier software architecture. The client communicates only
through the W3C defined standards such as XML,HTML, Javascript and JSON.
Thus the client’s browser does not require any third party software like Flash,
Java Plugin, etc. This convenience allows the simulation environment to swap the
backend simulation engines so that the same experiment can be executated with
different simulators for e-learning portals.

Keywords: Discrete Event Simulation, Web-Based Simulation, AJAX Webinterfaces, E-
Learning

Presenting Author’s Biography
Aman Atri studied Software and Information Engineering at the Vienna

University of Technology. His bachelor thesis analyses automated proofs
for model checking in temporal logic. After his bachelors program he
pursued with the master course Software Engineering and Internet Com-
puting. His master thesis deals with discrete simulation and visualisation
schemes for the web. This work has been dilated in his PhD thesis where
he is analysing and developing service oriented simulation frameworks and
interoperable connectivity of different simulators. He is working as a re-
search assistant at the Vienna University of Technology (Institute for Anal-
ysis and Scientific Computing).



1 Introduction
Internet based applications have reached a state where
the local bounding to one certain webserver is no more
required. Applications have now become loosely cou-
pled components which communicate in a distributed
way. Modern web frameworks use Web 2.0 technol-
ogy which can be found in any common social plat-
form. The idea of this work is to reuse these meth-
ods to develop a a communication mechanism for dis-
tributed event-oriented discrete simulation using stan-
dardised protocols and a large scalable multi-tier archi-
tecture.

While simulators are becoming more and more com-
plex the goal is to keep the controlling panel as simple
as possible. Where a few years ago the basic function-
aliy of the web was to display content which was for-
mated in HTML/Javascript/CSS on the clients browser
it has now become a interactive part where not only the
display of data and information is the main task but the
bidirectional manipulation and computation of the pro-
vided data. In the field of discrete simulation web based
simualtors executed the simulation on the local client
using a software plugin such as Java Applets, Flash,
Active-X, etc. These concept is usually restricted due
to security reasons like memory restrictions, access to
data and locally stored files. Latest web standards al-
low us now to use local and remote resources through
transparent network protocols[1]

2 Software Architecture
In terms of distributed computing we have certain kind
of boundries which can be optimised for a flexible per-
formance. In discrete event oriented simulation a lot of
complex datastructures have to be passed over the net-
work for remote computation. These data has then to
be sent to other nodes for further proceeding like vali-
dation, visualisation [1], etc and finally transferred back
to the client for the actual simulation experiment. These
complex communication needs to be implemented in a
bidirectional way.

2.1 Bidirectional Communication

Fig.1 shows that every server node is communicating to
a translator which understands both incoming and out-
going commands. As for XML is an open standard and
a lot of message passing protocols have already been
implemented in XML the communicators use this lan-
guage also for exchanging the data.

2.2 Service-Oriented Simulation

Execution of remote methods on the server side are
represented as so called web services. A web service
is introduced by defining a Web Service Description
Language (WSDL) which is also formated in XML.
A WSDL file describes which remote methods are of-
fered to the clients and what kind of parameters and
preconditions are required. For the simulating client
the data is transferred in an object-oriented fashion
while on the lower level these objects are marshalled
into XML-Objects and then by-passed trough the HTTP

Fig. 1 Communication Channels

protocol.[2, 3, 4]

Fig. 2 Service-Oriented Architecture

As for the HTTP protocol is designed to be a stateless
protocol the web server looses the information of the
client which is requesting a resource after the transmis-
sion has been completed successfully. In order to keep
in touch with the web service a multi-tier architecture is
applied to the system. Thus the client doesn’t directly
connect to the web service but to a component in be-
tween which is implemented as a Java Servlet. A pos-
itive side effect is the load balancing of the server ma-
chine. Now that in case the web service is overloaded
and cannot proceed further until the previous tasks have



been completed, the servlet can dispatch any future re-
quests to another web service which is currently idle.

2.3 Sequential Simulation vs. Parrrallelism

Different web services can be switched together or can
work even concurrently. Building simulation networks
where unpredictable number of components work to-
gether or may drop out implies to design an architecture
which implements the following criteria[5]:

• The client side should be simple and contain only
a few classes to decrease overhead traffic

• Discrete events triggered remotely have to be rec-
ognized and verified in case of data is lost or falsi-
fied during data transfer

• Fault tolerance mechanisms have to grant the ex-
changeability of components in case of loss of
connectivity. The simulation engine has to be noti-
fied when some remote modules are not reachable

Fig. 3 Webservices as Pipes

Now that the web services reside on different physical
machines the task can be distributed accordingly. A ma-
chine with a fast CPU or GPU might be engaged com-
puting complex numerical tasks while a large capacity
with internal backup system can be utilised as a host
which feeds and fetches data from a database manage-
ment system (DBMS). Fig. 3 illustrates this work flow
allocation. [6]

3 Persistence of discrete Models
In discrete simulation the data is not only provided by
a randomisation based on a statistical distribution but

often depends on already provided data which comes in
a relational database. As our models are designed and
implemented in an object oriented fashion and direct
giving access to the clients might be risky concerning
security policies the application server has the ability to
convert relational database tuples into objects and vice
versa. As described in Fig. 4 the model is converted
into XML using hibernation and then stored in a rela-
tional database. Thus the client doesn’t need do deal
with the details which database driver is used or how
the tables look like. This information abstraction al-
lows a hig-level scalability as for the database can be
extended and modified without chaning the code on the
client side.

All these features (web services, SOAP, web server,
hibernation) are included in the Java2 Enterprise Edi-
tion (J2EE) specification API. From the client’s point
of view it is a single host which executes the requested
commands but in the backend it is a whole network
which can optimize the workflow dynamically.[7]

Fig. 4 Persistance with Hibernate

Even dispatching to external applications is done in a
hidden way. So the user can for instance execute MAT-
LAB code without even having MATLAB installed lo-
cally. The MATLAB Compiler for Java TMcan compile
MATLAB code into Java classes which can be nested
in the repository of the application server.

4 Web-Based Visualisation
The server sideded pattern is a complex combination
of different components and modules which work in-
dependently from the client software. As for most of
the common modern programming languages provide
bindings and wrappers for SOAP and web services even
the server application modules can be written in differ-
ent programming languages. The goal is to separate the
actual simulation language from the compiled and exe-
cuted programming language. The user should be able
to start, control, manipulate and parameterise the sim-
ulation experiment with a minimum of overhead. The
web application is designed to be used for e-learning
purposes in education, rather than heavy-loaded perfor-



mance in the browser.[8]

4.1 XML and Javascript

Now that HTTP is a stateless protocol but the communi-
cation between the browser and the web server should
be bidirectional the data which is being transferred is
converted into XML queries and posted in an asyn-
chronous manner. The visualisation at the client sided
display is done via Javascript. This paradigm is widely
used on many social platforms commonly known as
Web 2.0 technology. The Asynchronous Javascript And
XML (AJAX) code includes several features like:

• JavaScript Object Notation (JSON): As in discrete
event oriented simulation a lot of complex objects
are processed concurrently, XML might lead to
a traffic and parsing overhead. JSON provides a
thin and simple and easy to parse syntax where the
nested paramenters can be restored as they were
sent through the browser.

• XML-RPC: Remote execution of methods where
all functions and their parameters are converted in
to an XML description.

• Dynamic source execution without reloading the
page: The user doesn’t need to reload the page
after a parameter as been posted. This feature is
quite handy for fluent animations. The AJAX con-
nector for Matlab cross compiled Java classes even
support dynamic rendering of Matlab figures. The
user doesn’t need to reload static (but dynamically
generated) images but can visualise the experiment
directly by manipulating and passing parameters.
[9]

The interactive web based simulation enables the user
to enter parameters or modify them using the browser.
Usually if the application is not running on on the client
side the browser sends this parameter to the web server
using the HTTP protocol. The request is matched with
the unique session of the user and the session values are
updated with the latest parameters The simulation web
application sends the result to browser and the page is
reloaded. Because of this latency during the HTTP re-
quests the visualisation cannot run fluently. Ajax tech-
nology is a work around to avoid networking overhead.

The main focus is not only to optimize single algo-
rithms but the whole system. Event oriented systems
dont interact trough a stream of information and data
but with synchronized events and require an architec-
ture which is mostly suitable if we use the web as a
global computation platform for a frictionless integrity
of storage and computing units.[5]

4.2 Modeling using GWT

Generic discrete simulators with graphical interfaces
can now be designed easily to work also as modelling
and visualisation application. The user can drag and
drop components like random number generators, wait-
ing queues, sinks, loops, timers, etc. with just a few

Fig. 5 AJAX and HTTP

mouse clicks and can justify the parameterisation. Usu-
ally this graphical inputs have to be uploded to the web
server through forms or applets. Now with AJAX do-
ing the synchronsiation in the background the objects
can be created remotely and any state changes on the
client side will be updated with the information given
from the XML webserver.

The simulating web server has to deal with lots of dif-
ferent kind of browsers and not every browser acts ac-
cording to the given JavaScript code. Sometimes there
might be inconsistent issues with the graphical display.
With the help of GWT (Google Web Toolkit) it is now
easy to design a web page layout and asynchronous al-
gorithms. The actual code is written in the Java pro-
gramming language using the GWT framework. The
code is then compiled into Javascript and XML code
and supports most of the modern common browsers.
GWT even supports the Java Servlet API and is capa-
ble to generate dynamic code while beeing executed in
a Servlet Container like Apache Tomcat. Even XML-
RPC and JSON code can be easily debugged because
errors are not overridden by the browser but the actual
Java compiler will throw an error. As a result the output
code is compatible with most browsers. [1]

The data can be converted from Java objects to JSON
objects which on the other hand can be transferred to
another domain. This cross-domain feature allows the
web services to reuse the objects without requesting
them from the client again.



Fig. 6 Cross domain references

5 Simulating in Tuple-Spaces
In large scale networks there is a high risk, that certain
kind of bottleneck effects can occur. This happens usu-
ally if one process is in starvation mode or while other
processes might be hung up in a deadlock. The client
cannot distinguish between:

• Overload: The server sided application is request-
ing for more resources

• Latency: The web service is still waiting for re-
sults from other threads. This can often lead to
timeouts.

• Crash: Any or many modules have been crashed
and cannot recover the tasks automatically

• Data loss: During the transmission of data some
information might have been lost so that further
proceeding is not in a correct order.

• Deadlock: Different services want to have exclu-
sive rights one resource.

• Network problem: There might be some problems
in the network which leads to latency.

To avoid such situations the simulation plattform and
the server nodes are surrounded by a global multiple
persistance middle-ware. This so-called tuple-spaces
provide scalability, resource sharing, and fault toler-
ance. A tuple space provides an unified memory (al-
tough the resources reside on different physical ma-
chines) with the following features:

• Every client gets an update of the state of all enti-
ties at any time requested.

Fig. 7 Multiple presistence (unified space)

• Any manipulation of the state of a model has to
be transactional. That means every client has to
be notified that an update has been committed. If
a client does not respond positively than either the
transaction has to be withdrawn or the correspond-
ing client has to be listed as non-active.

• Every entity which is accessible to all clients has
at least one copy of itself in the system.

Thus a tuple space can provide duplicated resources
and update the originial entities. A reference imple-
mentation of a tuple space is the open source project
MozartSpaces[10].

6 Conclusion
The usage of web technologies and communication pro-
tocol is to provide a transparent and easy to scale system
to provide a web based simulation environment for dis-
crete event oriented simulation in education. The web
application is designed to be used in e-learing and edu-
cation for academic courses regarding simulation.

The software design uses XML as a description lan-
guage for building the models and for communication
with the application server. The user is not aware
that the simulation environment uses different inter-
nal services for optimizing the workflow of the exper-
iment. Different programming languages can be inter-
connected and different webservices can share objects
in a global space. To provide fault tolerance and stabil-
ity for the whole system a global backup system (called
tuple space) is ensuring that data won’t get lost and ev-



ery resource available through at least one duplicate in-
stance.

7 References
[1] N. Nagele A. Atri. Web-based discrete simula-

tion services for education in modelling and sim-
ulation. In F. Breitenecker I. Troch, editor, Pro-
ceedings MATHMOD 09 Vienna - Full Papers CD
Volume, volume 35. ARGESIM / ASIM Vienna,
2009.

[2] Jerzy Tyszer. Object-Oriented Computer Simula-
tion of Discrete-Event Systems. Springer, 1st edi-
tion, 5 1999.

[3] Bernd Page and Wolfgang Kreutzer. The Java
Simulation Handbook: Simulating Discrete Event
Systems with UML and Java (Berichte Aus Der
Informatik). Shaker Verlag GmbH, Germany, 11
2005.

[4] M. Gyimesi. Simulation Service Providing unter
Verwendung von Web Service Technolgie. PhD
thesis, Vienna University of Technology, 2005.

[5] A. Atri F.Breitenecker N.Nagele S.Tauboeck. Dis-
tributed discrete simulation on the web. Proc. 20th
European Modeling and Simulation Symposium
EMSS2008, pages 392–397, 2008.

[6] Schahram Dustdar, Harald Gall, and Manfred
Hauswirth. Software-Architekturen fr Verteilte
Systeme: Prinzipien, Bausteine und Standardar-
chitekturen fr moderne Software (German Edi-
tion). Springer, 1 edition, 7 2003.

[7] Akmal Chaudhri, Mario Jeckle, Erhard Rahm,
and Rainer Unland, editors. Web, Web-Services,
and Database Systems: NODe 2002 Web and
Database-Related Workshops, Erfurt, Germany,
October 7-10, 2002, Revised Papers (Lecture
Notes in Computer Science). Springer, 1 edition,
4 2003.

[8] Eben Hewitt. Java Soa Cookbook. O’Reilly Me-
dia, 1 edition, 3 2009.

[9] Nicholas C. Zakas, Jeremy McPeak, and Joe
Fawcett. Professional Ajax, 2nd Edition (Pro-
grammer to Programmer). Wrox, 2 edition, 3
2007.

[10] MozartSpaces A tuple space implementation.
http://www.mozartspaces.org.

[11] Richard A. Kilgore, Kevin J. Healy, and George B.
Kleindorfer. The future of java-based simula-
tion. In WSC ’98: Proceedings of the 30th con-
ference on Winter simulation, pages 1707–1712,
Los Alamitos, CA, USA, 1998. IEEE Computer
Society Press.

[12] Jasna Kuljis and Ray J. Paul. A review of web
based simulation: whither we wander? In WSC
’00: Proceedings of the 32nd conference on Win-
ter simulation, pages 1872–1881, San Diego, CA,
USA, 2000. Society for Computer Simulation In-
ternational.

[13] Charles Marr, Christopher Storey, William E.
Biles, and Jack P. C. Kleijnen. A java-based simu-
lation manager for web-based simulation. In WSC

’00: Proceedings of the 32nd conference on Win-
ter simulation, pages 1815–1822, San Diego, CA,
USA, 2000. Society for Computer Simulation In-
ternational.

[14] Robert E. Shannon. Introduction to simulation. In
WSC ’92: Proceedings of the 24th conference on
Winter simulation, pages 65–73, New York, NY,
USA, 1992. ACM Press.

[15] Matlab Java Compiler (Mathworks).
http://www.mathworks.com/products/compiler/.

[16] Javascript Object Notation (JSON).
http://www.json.org.

[17] Java Enterprise Edition Glassfish.
http://java.sun.com.

[18] SOAP Specification W3C.
http://www.w3.org/tr/soap.


