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Abstract

Usually, mechanical machines do not break down or fail without any kind of warn-
ing, which is indicated by a combination of changing measurable symptoms. The
complexity and the high dimensionality of the measured signals require reliable,
fast, and less demanding methods to recognize the faults. In this work, a produc-
tion machine related supervision task is investigated over a long duration to design
a fault detection and prediction system to support condition-based maintenance of
wear parts and to detect and predict failures usually leading to the full loss of
functionality. Wear parts failure should be detected before scuffing or seizing lead
to serious failure of the machine. An approach for developing the system as a
prewarning module is presented. The system is based on support vector machine
(SVM) classification as a signal-based diagnosis technique and as a feature fusion
tool. The processed and extracted parameters of the machine operation are inves-
tigated and fused by the SVM to find the most reliable features for the detection
system. Alternative combinations of fusing sensors are taken into consideration
to find a complementary sensor array for better accuracy. A parameter indicating
the need for wear part replacement; a Change Index (CI) is presented based on the
decision value resulting from the SVM which shows a tendency to change over
time coinciding with the deterioration of the part and the remaining life time.
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1 Introduction

The use of condition-based maintenance has been ad-
dressed using a variety of approaches in order to re-
duce the costs of industrial systems and to maximize
the usage of machinery parts and systems. Condition-
based maintenance indicators describing the condition
of a machine or machine parts are used to determine the
state of the system which can be used to optimize main-
tenance procedures, system operation, and life cycles.
A machine will fail with time due to the wear and ul-
timate failure of its critical components. The question
is, when will this occur? Practically, an exact answer
is very difficult even with availability of many mea-
surements and operation parameters, but studying such
measurements and operation parameters of existing and
operating machines can give a reliable warning to avoid
unexpected or severe problems.

Usually, mechanical machines do not break down or
fail without any kind of warning, which is indicated,
for example, by an increased vibration level, increased
hydraulic pressure, decreased displacement, or a com-
bination of all these phenomena. On the other hand,
the complexity and the high dimensionality of the mea-
sured signals require reliable, efficient, fast, and less
demanding methods, which can be easily validated, to
recognize the faults by measuring symptoms. Many ap-
proaches have been used such as knowledge-based sys-
tems, model-based control systems, and statistical ap-
proaches. The use of signal-based approaches in ma-
chine learning techniques has been providing compara-
tively good performance without the need for complex
modeling task necessary for model-based approaches.
Recently, the concept of information fusion has been
added to the above mentioned techniques and has been
used to improve the accuracy of recognizing faults.

In this work, a production machine related supervision
task is investigated to design a fault detection system
based on SVM to detect failures usually leading to the
full loss of functionality. An indication of the remain-
ing life of the material is also required. Wear failure
should be detected before scuffing or seizing lead to
serious failure of the machine. The parameters of the
machine operation are investigated and fused by Sup-
port Vector Machine (SVM) to find the most reliable
features for the detection system. Alternative combina-
tions of fusing sensors are taken into consideration to
find a complementary sensor array for better accuracy.

2 Learning with SVM

After introduced by Cortes and Vapnik [1], based on
statistical learning theory, SVM spread after the com-
paratively excellent results were achieved in text recog-
nition and image classification [2, 3]. Since then SVM
has become a very popular technique for classification
and pattern recognition. Since early applications in
fault diagnosis [4, 5], Support Vector Machine (SVM)
has been showing better results compared to other ca-
pable techniques such as neural networks and model-
based reasoning.
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2.1 Mathematical description

The learning problem setting of SVM [6] is to find
the unknown nonlinear dependency (mapping, func-
tion) between some high dimensional input vector x
and scalar output y or as vector output y used in mul-
ticlass SVM. In general there is no information about
the underlying joint probability function [7]. Thus one
must perform a distribution-free learning. The only in-
formation available is a training data set. In general
[6] SVM involves and depends on the solution of the
quadratic optimization problem

to minimize
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where W represents the coefficient vector of the sep-
arating hyperplane, C represents a penalty parameter,
&; is a slack variable associated with the data point x;
where the number of the data points is I, b represents
the bias term of the separating hyperplane, and ¢ is a
mapping function. A decision function D(z) is used to
classify the unknown data points according to the posi-
tion and distance from the separating hyperplane. The
decision function value is coinciding with the distance
from the separating hyperplane and used as follows;
The unknown data point z is classified into
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If D(z) = 0, x is on the boundary and thus is unclassi-
fiable. The region
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is the generalization region of the classifier.
The function

K(zi,y5) = ¢(x:)" ¢(x;) (6)

is called the kernel function. Kernel functions are used
to map the input data from the input space into a higher
dimensional feature space, where the separating hyper-
plane is constructed. Here SVM finds a linear separat-
ing hyperplane with the maximal margin (Fig. 1).

2.2 Advantages of SVM

The most important advantage of the SVM is the
generalization ability. This is because of the maximum
margin criterion in the process of selecting the sepa-
rating hyperplane. Support Vector Machine is trained
to maximize the margin, thus the generalization ability
is better under conditions such as scarce training data.
Additionally, the feature space approach of the SVM
can be a tool to realize a complementary sensor array
for feature fusion [8], where a combination of signals
provides a more complete information of the problem
and therefore better accuracy than individual signals.
Another advantage of SVM is its robustness to outliers.
Proper setting of the penalty parameter C' which
controls the misclassification error suppresses the
outliers and reduces the effect of increasing noise level.
In neural networks, for comparison, the outliers need
to be eliminated before training [6].

2.3 Multisensor data fusion

Multisensor data fusion [8] refers to the intelligent pro-
cessing of a set of two or more sensors that have dif-
ferent levels of cooperative, complementary, competi-
tive, and independent qualities. Cooperative sensors are
combining sensors, which gives a new quality of infor-
mation while complementary sensors are those fused to
give more clear information of the problem. A competi-
tive array provides unrelated measurements of the same
physical phenomena. Data fusion are classified in three
levels: signals fusion, features fusion, and decision fu-
sion. SVM can be used as a tool for features fusion level
where extracted features are fused in the feature space
to give better information than individual features.

3 The given input data

Vibration measurement is becoming increasingly pop-
ular as a condition-based monitoring procedure and as
support for machinery maintenance decisions. Here the
velocity of vibration is a very important item to mea-
sure medium frequencies (until about 1k H z), where the
failure mode is fatigue and wear out of surfaces. On
the other hand, the velocity of vibration is sometimes
not suitable in extracting transient, process-related, or
impulse-like incidents, where the localized high fre-
quencies are dominating for short times. The sen-
sor data includes, in addition to vibration velocity and
vibration acceleration, for the considered system two
other important properties: the system hydraulic pres-
sure and the displacement of the piston of the monitored
parts. Combining both provides implicit information

about the friction and hence the tribological condition
of the parts surfaces.
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Fig. 2 Sample of raw data: displacement and system

pressure

T
|

e —

i
9 B 21

5 e 7
Time [sec.x10] it

M

L L L I
15 6 7 e T8 7 21

Time [secx10] -

g 8
T

888
{E_ 1
=_

Vib. velocity (mm/s] Vib. acceleration[mm/s?]

Fig. 3 Sample of raw data: vibration velocity and vibra-
tion acceleration

4 Data preparation and feature extrac-
tion

In order to apply a successful classification process, the
data must be prepared by careful transformation and
feature extraction procedures. The aim of such proce-
dures is to exclude redundant information and to put the
useful information for classification in an recognizable
structure.

4.1 Feature extraction

The time series vectors of the sensory data (Fig. 2 and
Fig. 3) do not comply with the cyclic nature of the
considered machine. Indicators of classification can
be parts of the physical cycle of the machine, for ex-
ample the high starting vibration velocity as given in
Fig. 4. In this case, if classification is applied to time
series vectors, the other parts of the cycle will deterio-
rate the efficiency of the classification (Fig. 5). This is
because no difference between these points according
to machine states is observed. After cleaning off the
redundant signals, the signals should be structured so
that transformed observations are as indicative as possi-
ble of the system states in the classification. Extraction
of the operation cycles of the machine is a preliminary
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step for further extraction of features. Furthermore, it
is important for the purpose of study to divide this pro-
cess into data segments. This is because of the nature
of parameters of the process. The complete cycle of the
machine comprises the process. The process comprises
actions of moving cylinders, and these actions have dif-
ferent importance, different shape, and accordingly, dif-
ferent characteristics of related real signals. Addition-
ally, these actions can be treated independently. By aid
of control signals of the machine in addition to compar-
isons of signal values, the machine cycle is divided into
16 data segments (Fig. 6), each data segment has similar
characteristics in all cycles. All these data segments of
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Fig. 6 An operation cycle of the machine

the machine process would give information about the
behavior of the machine. However, some data segments
are more informative and have more classification indi-
cators than others. To recognize the segments which
have more classification indicators the separable points
in the feature space (Fig. 5) should be detected. The
training data is used as time series sensor data to build
a feature space where the points with high separability
of the training data are detected and recognized in the
sensor time series data where the best candidate seg-
ments are specified. Data segment 7 and data segments
12-14 are found to be the best candidates to be consid-
ered. The data segment 7 is the power stage where the
machine is subjected to the highest stresses. It is the
main stage which is responsible for deterioration be-
cause of the direct effect of the load on the wear rate of
materials. On the other hand, data segments 12-14 com-
prise pulling back the cylinder without any load and this
would allow for materials contact without disturbance
of load changes in material and quantity. Both data
segments, 7 and 12-14, where taken into consideration
during the design of the system to select the most reli-
able data segment in diagnosis. The values of vibration
velocity, vibration acceleration, the system hydraulic
pressure, and displacement, along the data segments 7
and 12-14 respectively where taken as attributes in the
classification process.

Tab. 1 Abbreviation

Parameter Abbreviation
Vibration acceleration | A

Vibration velocity \Y

System pressure P
Displacement D

No. of attributes Attr.

No. of support vectors | S.V.
Accuracy Acc

4.2 Model selection

In SVM problems, model selection comprises selection
of kernel, kernel parameters, and penalty parameter C.
If the number of features is large, as in the current case,
one may not need to map the data to a higher dimen-
sional space, due to the nonlinear mapping which does
not improve the performance, [9]. As observed in the
current problem, using the linear kernel is good enough
compared to other kernels used, and one only searches
for the parameter C. A cross validation is done to es-
timate the best values of the penalty parameter C. The
goal is to identify good value to C' so that the unknown
data (testing data) can be classified accurately, and not
only the training data which comprises overfitting. Ad-
ditionally, a simple scaling is done to the data to avoid
numerical difficulties during calculation. Scaling is ap-
plied to help preventing the domination of greater nu-
meric ranges attributes on the smaller numeric ranges
ones, [9] .

Two classes are defined to train the classifier; the first
one is the state be f ore wear part change, and the second
is the state a fter wear part change. A training data of



200 cycles, 100 cycles each class, were taken randomly
from 4 places of the data. A linear kernel is considered
because of the high number of attributes.

5 Results and discussion

Tab. 2 Results: Data segment 7 for 4.2004

Signal comb. | Attr. | S.V. | Acc. (Perc.)
A 100 | 20 56.94
\Y 100 | 11 60.71
P 100 | 14 56.15
D 100 | 9 54.03
A-V 200 | 19 60.46
A-P 200 | 14 56.49
A-D 200 | 10 56.06
P-V 200 | 9 58.79
V-D 200 | 9 57.76
P-D 200 |9 54.47
A-P-V 300 | 16 58.59
A-V-D 300 | 9 56.87
A-P-D 300 | 10 55.98
P-V-D 300 | 9 57.71
A-P-V-D 400 | 9 56.84

Tab. 3 Results: Data segment 12-14 for 4.2004

Signal comb. | Attr. | S.V. | Acc. (Perc.)
A 200 | 22 94.54
\Y 200 | 21 96.96
P 200 | 70 91.56
D 200 | 63 93.66
A-V 400 | 25 97.36
A-P 400 | 24 95.53
A-D 400 | 21 96.06
P-V 400 | 21 97.14
V-D 400 | 22 97.34
P-D 400 | 52 95.41
A-P-V 600 | 26 97.44
A-V-D 600 | 25 97.67
A-P-D 600 | 26 96.23
P-V-D 600 | 22 97.44
A-P-V-D 800 | 25 97.76

Two groups of data are investigated: data segment 7
and data segment 12-14, with fifteen combinations of
the four sets of measurement data. Each test set has
a size 15874 cycles. Using the algorithms of Chang
and Lin [10], the task was to solve the classification
problem with a linear classifier, two classes, 200 cy-
cles training data, 15874 cycles test data, and number
of attributes 100, 200, 300, 400, 600, and 800 attributes.

Results of possible sensor combinations are summa-
rized in table 2 and table 3 for data segment 7 and data
segment 12-14 respectively and the abbreviations used
are listed in table 1. In general, data segment 12-14 has
better accuracy with maximum accuracy of 97.76 per-
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cent than data segment 7 with maximum accuracy 60.71
percent. This is because data segment 12-14 comprises
a sensor signal without disturbance from material type
and size to be compressed.

In order to understand the effect of combining individ-
ual signals the possible combinations and their accu-
racies are plotted in the combination accuracies plots,
Fig. 7 and Fig. 8 of segment 7 and segment 12-14 re-
spectively. These plots help to recognize the effect of
combining sensor information, whether positive or neg-
ative, on the accuracy of the classification system. They
can also be used to follow a certain sensor and to realize
the efficiency of adding different sensors to it. Studying
the two figures, Fig. 7 and Fig. 8, the following obser-
vations can be realized: The best single signal accuracy
in both groups is the results from the vibration velocity.
This is may be because of the previously mentioned ef-
fect of wear frequency and the sensitivity of vibration
velocity measurements to wear problems. The second
best single signal accuracy is the vibration acceleration.
It can also be seen from the two figures that the accu-
racy is negatively influenced by combining sensors in
segment 7, while it is positively influenced by combin-
ing sensors in segment 12-14. This could be justified
by the high level of noise in segment 7. Adding sen-
sor information can lead to accumulating noise which
would deteriorate the accuracy of classification. The
best accuracy in both segments is the combination of
all signals in data segment 12-14 with an accuracy of



97.76 percent. To avoid material-related disturbances
the following aspects should be noted:

1. The higher dimensional feature space allows better
description of the data.

2. The combination of signals can give better infor-
mation than individual signals.

3. All sensor signals should be integrated so less in-
formation should be lost.

This is not the case with the results of segment 7
where the disturbance confused the results of the signal
combinations.

To study the effect of combining a specified sensor
with other sensors the vibration velocity is taken as an
example to be followed in both segments. Accuracies
of vibration velocity combinations are shown in Fig. 9
and Fig. 10 for segment 7 and segment 12-14 respec-
tively. In addition to the observations and arguments
mentioned with Fig. 7 and Fig. 8, it can be seen that
combining a specified signal with a first signal of better
accuracy than a second one gives better accuracy than
combining the specified signal with the second signal.
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The decision value function of the highest accuracy
combination is shown in Fig. 11. It is an indication of

how much a cycle’s information contributes to a class.
Indeed it is a measure of how far a point (cycle) from
the separating hyperplane. The running-in period of the
new material can be clearly identified from the figure.
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Fig. 11 Decision value of the signal combination for
data segment 12-14
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smoothing

The model of the combination of signals in data seg-
ment 12-14 is applied to a longer test set data of 241034
cycles (average period of 1.5 year of machine oper-
ation). The resulting decision value function and its
smoothing are shown in Fig. 12. Smoothing of the func-
tion shows a tendency for the average signal to increase
over time. Briefly described, the two classes become
closer over time. As a sequence, a change index (CI)
is proposed based on the decision value function which
shows a tendency to change over time coinciding with
the deterioration of the part and the remaining life time.
The CI, Fig. 13, is a measure function of the distance
between the current position of the decision value of a
measurement and the maximum allowed position of the
decision value before changing of the wear part is nec-
essary. The CI is not only an indication of how “worn”
a part is, but it can give indication of the remaining life
time of the part, which adds a value to the maintenance
planning of the machine.
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6 Conclusion

A SVM classifier was applied to wear parts evaluation
detection problems to find the most reliable characteris-
tics for a diagnosis system. Combinations of sensor in-
formation are investigated to study the effect of fusing
features on the accuracy of the classification. Applica-
tion of SVM with preprocessing is efficient enough so
that no further dimensional reduction is required. Vi-
bration velocity can be detected as very sensitive to
material changes, but nevertheless a combination of
signals (including vibration velocity) gives more accu-
rate result, with the friction occurring without distur-
bance of machine’s operation process. The two states of
running-in and wear-out of the considered parts can be
distinguished clearly in the feature space, although they
have some similar characteristics. Finally, a change in-
dex (CI) is proposed based on the decision function re-
sult of the classifier as an indication of how “worn” a
part is.
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