
EFFICIENT EVENT-DRIVEN PROXEL
SIMULATION OF A SUBCLASS OF HIDDEN

NON-MARKOVIAN MODELS
Robert Buchholz, Claudia Krull, Graham Horton

University of Magdeburg, Faculty of Computer Science
PO Box 4120, 39106 Magdeburg, Germany

robert@isg.cs.uni-magdeburg.de, claudia@sim-md.de(Robert Buchholz, Claudia Krull)

Abstract

The paper introduces a new event-driven state space-based analysis algorithm for
hidden non-Markovian models (HnMMs). HnMMs have been developed recently
to enable the analysis of hidden discrete stochastic systems based on their observ-
able output, e.g. to determine the unobserved causes of observed defects. There
are currently two known approaches for analyzing HnMMs: Proxel-based analysis
is generally applicable, but very time consuming and therefore infeasible for most
realistic models; the modified Forward solver is very fast, but restricted to models
of Markov regenerative type, which is a harsh restriction. The approach presented
here bridges the gap between these two algorithms. It adapts the constant time
steps of the Proxel algorithm to the time intervals between two output symbols
and on the other hand encodes history into the modified Forward solver, thereby
eliminating the need for the models to be of Markov regenerative type. However,
the event driven Proxel algorithm requires every transition to produce observable
output. Performance experiments show that the algorithm can generate a speed-up
of up to factor 50 compared to the general Proxel solver for this restricted class of
models. This paper extends the range of HnMMs that can be analyzed feasibly. It
is another step toward practical feasibility of HnMM analysis, making them more
useful for practitioners in the industry.

Keywords: Discrete stochastic system, hidden model, HnMM analysis, simulation algo-
rithm

Presenting Author’s Biography
Robert Buchholz obtained a Bachelor’s degree in Computer Information
Systems from the University of Wisconsin - Stevens Point (USA), and a
Bachelor’s as well as a Master’s (“Diplom”) degree in Computer Science
from the Otto-von-Guericke University Magdeburg (Germany). He is cur-
rently a Ph.D. student at Magdeburg University and conducts research on
practical applications of new discrete simulation techniques.

1 Introduction
Discrete stochastic models (DSMs) are widely used in
the industry, especially in the fields of manufacturing
and logistics. They allow to explore possible system
behaviors in order to better understand the system, ana-
lyze the behavior of a known system under various cir-
cumstances, and enable the user to find ways to opti-
mize the system, e.g. to make it faster or use up less
space.

So far, however, few practitioners use the power of hid-
den DSM analysis techniques. These allow for the anal-
ysis of discrete stochastic systems for which the system
specifications are known, but the actual runtime behav-
ior is not. These systems generate some kind of observ-
able discrete output on some events, but the internal be-
havior is not observable. The analysis techniques then
determine the most likely internal system behavior that
has produced a given output sequence and thereby re-
construct the likely internal behavior from the observed
output trace.

These hidden DSM analysis techniques can be used to
reconstruct previous behavior from incomplete infor-
mation (e.g. in forensics, or to find differences be-
tween system specifications and actual system behav-
ior). They are also known to be able to determine un-
observed causes of defects [1].

The most well-known efficient approach to model
and analyze hidden DSMs are Hidden Markov Mod-
els (HMMs) [2], which however can only operate on
Markovian (i.e. memoryless) systems, limiting the ap-
plicability. HMM have been extended in various ways
to overcome some of their limitations (e.g. in [3]).
These extensions slightly extend the modelling capa-
bilities, but are still somewhat limited. Recently, how-
ever, Hidden non-Markovian Models (HnMMs) were
introduced [4] to model and analyze arbitrary hidden
discrete state systems. HnMMs, however, are currently
computationally very expensive to analyze.

So, the analysis of HMMs if very fast, while HnMMs
are very versatile, but to our knowledge there is no
known modelling and analysis approach with exten-
sive modelling capabilities and an efficient solution ap-
proach. Therefore, the goal of this work is to find a
more efficient simulation algorithm for subclasses of
HnMMs that are still more expressive than (modified)
HMMs in order to be able to efficiently analyze less
limited and therefore more realistic models. This will
eventually enable us to analyze the hidden behavior of
actual manufacturing systems, in order to gain insights
not yet possible.

2 State of the Art
Hidden non-Markovian Models were introduced and
classified in [5] based on the following three criteria:

• Whether all state transitions are reset after each
symbol emission (Treset) or if some or all of them
keep aging (Tkeep).

• Whether all (Eall) or just some (Esome) state tran-
sitions emit observable symbols.

• Whether a state can be reached from any other
state through at most one (SConeT) or an arbitrary
number of state transitions (SCnT)

The last dimension affects only certain implementation
details, but has no influence on the effort necessary to
analyze the model. It is therefore not examined any fur-
ther in this work. Models may thus be appropriately
classified using the other two dimensions, spanning a
2 × 2 matrix of HnMM classes. The HnMM class of
a modell is determined by the modelling capabilities
it requires and can potentially have a substantial im-
pact on the computational effort necessary to analyze
the model.

Aging Behavior

TReset TKeep

S
y
m

b
o
l
E
m

is
si

o
n
s

E S
o
m

e
E A

ll

Modified
Forward

M
od

ifi
ed

 P
ro

xe
l

Fig. 1 Classification of HnMMs along with the corre-
sponding analysis algorithms.

Figure 1 shows the matrix of HnMM classes and
the currently-used analysis algorithm for each: An
efficient analysis algorithm exists for models of the
(Treset, Eall) class. It is a modified version of the
Forward algorithm used to analyze HMMs and usually
takes only a few seconds even when analyzing long out-
put traces (containing 3000 and more symbols). For all
other classes, an algorithm based on the Proxel[6, 7]
method is used[8]. This algorithm, however, is com-
putationally expensive, requiring computation times of
several minutes to several hours even for small models.
This is due to a potentially huge number of intermedi-
ate states that need to be considered and are discarded
later, when the next symbol emission is observed.

2.1 Modified HnMM Forward Solver

The HnMM Forward solver is based on the Forward
algorithm for HMMs [9]. It exploits the restrictions im-
posed by the (Treset, Eall) class of HnMMs:

• Due to Treset, the probability to change state at
the time of symbol emission depends only on the
associated probability distributions and the length
of the time interval between emissions. The his-
tory before reaching the current state has no influ-
ence and needs not be retained. This corresponds
to models of Markov regenerative type that regen-
erate after every state transition.

• Due to Eall, the system changes its internal state
only when a symbol is emitted. Consequently,
there is no activity in between symbol emissions
that would need to be analyzed. Since symbol
emission times are the only relevant events, these
intervals between two symbol emissions will be
used as the analysis time step.

The algorithm starts by initializing the probability of
each system state at the beginning of simulation time
(e.g. by dividing the probability equally between all
states, or by assigning a probability of one to the known
start state). It then iteratively computes the probabilities
for all systems states in each time step. In detail, the
probability to have been in state A at time tn and to
have moved to state B at time tn+1 under emission of
symbol X is computed as the product of

• The probability of being in state A at time tn

• The probability to not have left state A during the
interval [tn, tn+1]

• The relative (to all other possible state changes)
probability to change the state fromA toB exactly
after tn+1 − tn time has passed

• The probability to emit symbol X when changing
state from A to B

This product is then added to the probability to be in
state B at time tn+1.

The algorithm is very fast, but few models adhere to
the restrictions of (Treset, Eall): that every change of
the internal system state is observable, and that all pro-
cesses are terminated and new ones restarted at every
state change. Thus, most models cannot accurately be
modeled using this approach.

2.2 Modified Proxel Solver

The modified Proxel solver was developed to analyze
every imaginable kind of HnMM. It does not impose
additional limitations beyond those of the definition of
HnMMs. In particular,

• The model does not have to adhere to Treset, so
that the state change probability may depend not
only on the length of the time interval between two
successive symbol emissions, but also on the dura-
tion that each transition has been active since it last
fired. Therefore, records of all possible combina-
tions of these ages along with the corresponding
probability must be kept.

• The model is not necessarily Eall, meaning that
the system may change its state at any time (and
even multiple times) in between two symbol emis-
sions and these state changes are not observable.
Hence, the algorithm must analyze all possible
state changes between symbol emissions.

So, further possible system development depends on

• the current discrete system state

• the ages (duration of inactivity since last deactiva-
tion or firing) of all active and/or race-age transi-
tions

• the probability of that state/age combination

and this information is stored for each possible system
state as a so-called Proxel. The analyzing algorithm
initializes the set of possible system states at the be-
ginning of simulation time (usually by creating a single
start Proxel with probability one). It then divides the
simulation time into equally-sized (user-definable) time
steps and evaluates all possible outcomes after each
time step. It does so by computing successor Proxels
to each Proxel of the current time step for all possible
single state changes as well as for inactivity (no state
change at all) during a time step. If two successors re-
sulting from different Proxels have the same discrete
system state and identical age vectors, their Proxels can
be merged by simply summing up their probability. The
original algorithm was first introduced in [6] and is de-
scribed in depth in [7].

This approach is slightly modified to analyze HnMMs:
For time steps that include a symbol emission, the same
formula as for the modified Forward algorithm is used.
This also means that possible events happening be-
tween a symbol emission and the end of the time step
during which the emission happened are ignored. Ad-
ditionally, all Proxels whose cause of creation is not in
line with the observations from the output trace are dis-
carded. This affects Proxels that were created through
inactivity during emission time steps as well as those
created by a symbol-emitting state transition during
time steps where no symbol was emitted according to
the output trace.

This algorithm is applicable to all HnMMs, but the of-
ten exponential growth in the number of possible sys-
tem states (called “state-space explosion”) makes it im-
practical to analyze most HnMMs with this approach.
Thus, it is not computationally feasible to use this ap-
proach to simulate the majority of models.

2.3 Summary

So, two algorithms exist to analyze Hidden non-
Markovian models: An efficient modified Forward al-
gorithm that is applicable only to a small subset of use-
ful HnMMs; and the modified Proxel approach that can
be used to analyze any HnMM, but is not necessarily
the most efficient choice for a given model and may of-
ten be computationally infeasible.

The modified Proxel approach was developed for the
least strict interpretation of HnMMs (Esome, Tkeep)
and therefore works also for more restricted classes of
HnMMs. However, it stands to reason that for these
more restricted classes, more efficient algorithms may
be developed.

3 New Event-Driven Proxel Approach
The main contribution of this work is the develop-
ment of an efficient event-driven computation algorithm
for the (Eall, Tkeep) case. Even though this class has
some limitations over the most general (Esome, Tkeep)
HnMM class, there are practically relevant models that
fall into this class, for example the one analyzed in [1].

For this class of HnMMs:

• Eall holds and thus the times of all state changes
are known and the algorithm can analyze these
events separately from the known time interval
of inactivity in between (hence the name “event-
driven”).

• the generic Tkeep is assumed. Therefore, history
has an impact on possible future system develop-
ments and must be retained. The forward HnMM
solver is thus not applicable for this class of mod-
els.

The new approach occupies a middle ground between
the fast Forward solver and the versatile Proxel solver.
It can be seen either as an extension to the forward
solver, or as a simplification of the Proxel solver. For
the purpose of describing the algorithm, the latter ap-
proach will be used. For sake of completeness, the for-
mer will be mentioned briefly afterwards.

3.1 Motivation

For the class of Eall models, all state transition times
are known in advance. When analyzing these models
with the modified Proxel solver, it can be observed that
during time steps without symbol emissions, the only
valid successor Proxels are those representing inactiv-
ity. No additional Proxels are created (or, equivalently,
Proxels representing state changes are created and dis-
carded at once).

So, the intervals of inactivity between symbol emis-
sions are essentially reduced to a stepwise computation
of the probability of inactivity for each Proxel (Fig-
ure 2 shows a schematic Proxel tree for this simula-
tion approach). The time steps during which symbols

Timet=0 t=10 t=20 t=30 t=40 t=50

Emission at
t=34.7

Emission at
t=53.2

Fig. 2 Schematic development of the Proxel tree for a
Eall HnMM using the modified Proxel solver. Arrows
without successors represent Proxels that are being dis-
carded.

are emitted contain both, inactivity up to the emission,
the time of symbol emission itself, and system behavior

that could unfold after the emission till the end of the
time step (which is ignored in this approach).

It would be more elegant to distinguish between peri-
ods of inactivity and times of symbol emission, and to
compute these separately.

3.2 Algorithm

So the idea of the new event-driven Proxel algorithm
is to no longer use constant time steps, but instead to
regard each interval of inactivity between two succes-
sive symbol emissions as a single time step. Conse-
quently, these time steps will vary in length. They will
also never contain a symbol emission, but will always
end with one. Figure 3 shows a schematic Proxel tree

Timet=0

Emission at
t=34.7

Emission at
t=53.2

Fig. 3 Schematic development of the Proxel tree for the
same Eall HnMM using the event-driven Proxel solver.
Arrows without successors represent Proxels that are
being discarded.

for this new approach: A successor Proxel will always
be created as the result of a period of inactivity over
the course of a whole time step, followed by a symbol
emission caused by a state change.

The probability of inactivity during a time step is com-
puted the same way as for the modified Proxel solver,
by a suitable numerical integration of the differential
equation

dΠ

dt
= −Π(t)

∑
i

µi(τi(t)) (1)

over the current time step. Here, Π(t) is the probability
to still be in the current state at time t, µi is the hazard
rate function associated with the probability distribu-
tion of the ith active state transition in the current state,
and τi(t) is the duration that the state transition i has
been active at time t.

The relative probability to change state due to transition
j firing at time t, under the condition that a transition
is known to have fired at that time and has emitted a
symbol, is also still computed by the same formula as
in the case of the modified forward and Proxel solvers:

Πrelativej =
µj(τj(t))∑
i µi(τi(t))

(2)

The probability of being in each possible target state B
at the end of a time interval when one has been in state
A at the beginning of the interval and symbol X was
emitted is then simply the product of

• the probability of inactivity during that time step

• the relative probability to change state from A to
B at the end of the time step

• the constant given probability of emitting symbol
X while changing state from A to B

The pseudocode for the full algorithm is given in Algo-
rithm 1.

Algorithm 1: Pseudocode for the event-driven Proxel
solver.
Data: initialProxels, Trace
Output: nextStepProxels = finalStateProxels
currentProxels = initialProxels;
foreach TraceElement el ∈ Trace do

nextStepProxels.clear();
∆t = el.emissionTime - prevEmissionTime;
prevEmissionTime = el.emissionTime;
foreach Proxel p ∈ currentProxels do

stayProb = computeInactivityProbability(p,
∆t);
hrfSum =0;
foreach Transition trans ∈ p.state.transitions
do

hrfSum += trans.getHrfValue(p.ages);
foreach Transition trans ∈ p.state.transitions
do

transProb = trans.getHrfValue(p.ages) /
hrfSum;
pSucc = p.createSuccessor(trans, ∆t);
pSucc.probability = p.probability *
stayProb * transProb *
trans.emitProbability(el.symbol);
nextStepProxels.addOrMerge(pSucc);

currentProxels = nextStepProxels;
return nextStepProxels

3.3 Consequences

These modifications from the old modified Proxel ap-
proach cause a number of consequences, most of which
are beneficial:

Since the time interval between two symbol emissions
can become quite big (relative to the support of the ac-
tive transitions), simple single-step integration to com-
pute the inactivity over each time interval no longer
yields sufficiently accurate results. The computation
should be based on an adaptive integration method. For
our implementation, we use a modified version of the
Dormand-Prince (ODE45) integration method [10].

No Proxels are created for the time between the emis-
sion of two symbols, making the algorithm more effi-
cient. The analysis speed increases, since intermediate
time steps need not be computed. This reduces the time
needed to solve the inactivity ODEs, create the inter-
mediate Proxels, and find potential Proxel merge candi-
dates.

The approach does not introduce additional errors be-
yond those of the Proxel method. All simplifications

are justified by the properties ofEall. So the new event-
driven approach is faster, but not less accurate than the
modified Proxel approach. The approach can actually
be more accurate that the Proxel solver, because the
Proxels’ age vector elements are no longer forced to be
a multiple of the time step size, but can contain the cor-
rect ages. Furthermore, the event-driven solver does not
suffer from the normal Proxel accuracy impact caused
by effectively ignoring all system behavior between a
symbol emission and end of the corresponding time
step, since in the new algorithm, the symbol emission
always marks the end of a time step.

Users of the event-driven Proxel approach are also not
plagued by a side-effect of the HnMM Proxel analy-
sis: Since the method can only simulate a single sym-
bol emission per time step, time step sizes needed to be
smaller than the smallest interval between two symbol
emissions. This often meant a huge performance im-
pact - since computation time increases exponentially
with reduced step size - without a notable gain in ac-
curacy. The event-driven Proxel simulation adapts time
steps to the individual inter-symbol-emission intervals
and thus does not have this limitation.

The limitations ofEall along with the algorithm’s adap-
tion to them result in a far simpler analysis of the result
errors. The Proxel method has three inherent sources
of errors[11]: one related to only simulating a single
state transition per time step, one caused by the integra-
tion inaccuracy, and one caused by expressing age vec-
tor elements representing state changes that happened
anywhere during a whole time step as a single number,
which furthermore must be a multiple of the simulation
step size. The event-driven approach for Eall models
accurately simulates the only state transition per time
step and since these transitions can happen only at a
certain point in time (as opposed to a time interval), the
age values stored inside the Proxels of the event-driven
method are also accurate. This leaves the only error to
be the integration error. For this error, numerous tech-
niques exist to reduce or measure it, making it a rela-
tively simple task to assess the simulation accuracy for
a given model.

Since the integration error can be controlled automat-
ically by adaptive integration methods, no more user-
tunable parameters are necessary, making the approach
easier to use for practitioners.

3.4 Alternative Interpretation as Extension to the
Forward HnMM Solver

The algorithm could also be interpreted as an exten-
sion to the Forward HnMM solver. For both classes of
models (the one for which the Forward HnMM solver
is applicable, and the one for which we developed the
event-driven Proxel simulator) Eall holds and so state
changes occur at known points in time. For both algo-
rithms, time steps can be defined in such a way that the
symbol emissions occur at the end of each time step.
Then, the probabilities of inactivity during a time step
and the relative probability of a given transition firing
can be computed with the same formulas in both cases.

The reason that the modified Forward solver is not di-
rectly applicable to models of the (Eall, Tkeep) class is
that through Tkeep, history has an influence on inactiv-
ity and transition probabilities. For this class of models,
the probabilities depend not only on the current system
state, but also on how long the transitions have been
active since they last fired or were deactivated.

In order for an algorithm of the Forward structure to
work with Tkeep models, this age information needs to
be encoded into the system states. Thus, for the compu-
tation, each discrete state needs to be represented by a
set of Markov Chain states, which are a combination of
the discrete state with all possible reachable age vectors
in that state.

The algorithm would then perform the same computa-
tions in each time step as the event-driven Proxel ap-
proach, and would arrive at the same result.

This alternative description of the development of the
event-driven Proxel approach shows that the approach
is not a radically different approach, but rather lies on a
continuum between the already known algorithms. This
notion suggests that it should be possible to develop
similar algorithms for other subclasses of the HnMMs
as well by finding a suitable middle ground between the
fast Forward solver and the versatile Proxel solver.

4 Experiments
The purpose of this section is to detail performance
comparison experiments conducted on (Eall, Tkeep)
models with the event-driven Proxel solver and with the
modified Proxel solver, since these are the only known
algorithms, which can sensibly analyze models of that
class.

Its goal is to determine, under which conditions a per-
formance increase of the event-driven Proxel simulator
over the modified Proxel solver can be expected. To
that end, the following questions are to be answered:

• How does the accuracy of the two approaches dif-
fer when using the same simulation step size (inte-
gration step size in case of the event-driven algo-
rithm) ?

• How does the accuracy of the two approaches dif-
fer when allowing for the same computation time?

• How do the computational costs of both ap-
proaches change when increasing the trace length?

• How does the accuracy and computation time of
the event-driven Proxel solver change, when it is
modified to not use the correct real-valued age val-
ues in its Proxels, but uses values rounded to a
multiple of a given constant step size?

The model used in all experiments is shown as a
stochastic Petri Net with additional symbol emission
probabilities in Figure 4. It represents two machines
that produce indistinguishable items with known inter-
arrival times, and a downstream quality tester (which in

RA

N(150, 25)

RA

N(120, 20)

Ok
p

Defective
1-p

Ok
p

Defective
1-p

Machine 1 Machine 0

1 1 0 0

Fig. 4 The “Tester” model

the model causes the symbol emissions) that tests the
produced items for defects. The tester logs the test re-
sult (“Ok” or “Defective”) and time stamp of each test,
but cannot determine the source of the tested item. The
task of an HnMM analyzer is therefore to determine
an estimate of how many of the known-to-be-defective
items were produced by each machine. Since the actual
defective probabilities are not known (as they are to be
computed), their are all set to 0.5 in the model.

4.1 Experiment Setup

All computation times recorded are the CPU times of
the respective simulation processes, not the overall sim-
ulation duration (wall time). This approach reduces the
influence that concurrently running programs may have
on the computation time. All experiments were con-
ducted on a Core2Duo 3GHz CPU. However, both sim-
ulation programs are single-threaded, using only one of
the CPU cores. The CPU was manually set to always
run at full speed in order to eliminate the influence of
temporary CPU frequency reduction on the computa-
tion times.

The implementations of the modified Proxel solver and
the event-driven Proxel solver algorithms share most of
their source code. They use identical code for Proxel
storage, numerical integration, and probability distribu-
tions. Different code is only used when the differences
in the algorithms make it necessary. Consequently,
the differences in in computation time can indeed be
attributed to the different theoretical approaches with
great confidence.

4.2 Accuracy

To test the accuracy of the two approaches, a single
sample output trace of the model was analyzed by both
algorithms using viable simulation step sizes. Since the
event-driven Proxel simulator does not operate on sim-
ulation steps directly, the selected step size was used as
the upper limit for the integration step size of all proba-
bility computations. For the event-driven Proxel solver,
all integration step sizes are viable. For the modified
Proxel solver, a viable simulation step size is one where
no two symbol emissions happen during a single time
step. This limitation is necessary, because the modified
Proxel solution algorithm for HnMMs is not defined for
these cases.

0.01 0.1 1 10
53.9

53.92
53.94
53.96
53.98

54
54.02
54.04
54.06
54.08

54.1

Event-Driven Modified Proxel

Step Size

#
D

e
fe

ct
iv

e
s

fr
o

m
 M

a
ch

in
e

 1

Fig. 5 Results for the experiment on algorithm accuracy
for given step sizes. The horizontal axis has a logarith-
mic scale.

The results for the computed expected values for the
number of defective items produced by machine 0 are
shown in Figure 5. For decreasing step sizes, the results
for both algorithms converge to the same value, indicat-
ing that both algorithms do indeed solve the problem
correctly. However, the results for the event-driven al-
gorithm converge much faster, agreeing with the final
result in four digits already at a step size of 8, while the
modified Proxel solver needs a step size of 0.2 for the
same accuracy.

The difference is likely to be explained by assumptions
the algorithms make on the system behavior: The mod-
ified Proxel solver ignores any events that happen be-
tween a symbol emission and the end of the correspond-
ing time step. The event-driven algorithm starts a new
time step after each symbol emission and thus does not
make this assumption.

4.3 Simulation Efficiency

The simulation efficiency is the result accuracy that can
be achieved by investing a given amount of computa-
tion time. Using the results from Section 4.2, the value
that the results for both algorithms converge to for de-
creasing step sizes (about 53.982) can be assumed to be
the correct simulation result.

0.1 1 10 100 1000
53.8

53.85

53.9

53.95

54

54.05

54.1

Event-Driven Modified Proxel

Computation Time (s)

#
D

e
fe

ct
iv

e
s

fr
o

m
 M

a
ch

in
e

 1

Fig. 6 Results for the experiment on algorithm effi-
ciency. The horizontal axis has a logarithmic scale.

From the information gathered from the experiment in
Section 4.2, the computation times and the computed

simulation results are taken and plotted in Figure 6. For
the event-driven algorithm, the simulation results con-
verge to the final result with only minor investment in
computation time. For a computation time of only one
second, the results differ by no more than 0.01 from the
final result. Due to the limitation to viable step sizes,
the modified Proxel solver is not able to compute a sim-
ulation result within that time frame. For the same ac-
curacy, the modified Proxel solver needs about 50 sec-
onds. Thus, this experiment demonstrated a gain in ef-
ficiency by a factor of 50 for the event-driven solution
algorithm.

This gain is likely due to two factors. The first factor
is the same as mentioned in Section 4.2: The Proxel
method makes an additional assumption on the system
behavior between a symbol emission and the end of a
time step. This assumptions generally does not hold
and thus causes an additional error.

The second factor is related to the integration accuracy:
The modified Proxel simulation needs to compute inte-
gration results for each time step to compute the transi-
tion probability and create the Proxels for the next time
step. This forces the maximum permissible integration
step size to be the simulation step size, even if such a
small step size may not be necessary. This causes a
performance penalty, particularly when other assump-
tions of the algorithm cause a bigger error, so that the
higher integration accuracy cannot result in a more ac-
curate final result. Thus, the modified Proxel solver has
to perform many more computationally expensive inte-
gration steps than would actually be sensible. For the
event-driven solver, each integration step size can be as
big as the time between two symbol emissions and need
only be reduced to actually increase accuracy, saving
unnecessary computations.

4.4 Behavior Under Increasing Trace Length

The behavior under increasing trace length is one way
of measuring the ability of an approach to cope with
increasing complexity. This experiment was conducted
in order to ensure that the favorable results obtained in
the previous experiments are generalizable and do not
apply to just a limited set of parameters.

For this experiment, the model was analyzed with both
algorithms using only the first n elements of a trace.
The simulation and integration step size was set to 0.25
in order to yield computation times that are high enough
to not be impacted by random influences.

Figure 7 shows the results: both algorithms exhibit
only a linear increase in computation time with in-
creasing trace length, and both increase by almost the
same factor. This behavior was to be expected. The
event-driven simulation approach removes some redun-
dancies in computing intermediate results of the mod-
ified Proxel approach, but after each symbol emission,
both algorithms still contain almost the same number of
Proxels. Since integration step size was fixed to make
results comparable, the event-driven approach cannot
benefit from using more generous integration step sizes.
The slight overhead of the event-driven approach is

0 200 400 600 800 1000 1200 1400 1600
0

2

4

6

8

10

12

14

Event-Driven Modified Proxel

Trace Length (#Symbols)

C
o

m
p

u
ta

tio
n

 T
im

e
 (

s)

Fig. 7 Computation times for varying trace lengths for
both algorithms. Simulation and integration step size
was set to 0.25 in all cases.

likely due to the event-driven Proxels to contain arbi-
trary real-valued age vector elements (while the Prox-
els of the other algorithm contain only age values that
are an integer multiple of the current step size) and thus
not being able to merge as many Proxels as the old ap-
proach.

Overall, this experiment shows that the modified Proxel
solver and the event-driven Proxel solver take almost
the same amount of time to finish a computation for the
same trace length and step size. Since the event-driven
approach has been shown to achieve a higher accuracy
within the same computation time, this means that it
will keep that advantage under increasing trace lengths
as well.

4.5 Rounded Age Values

For the modified Proxel approach, the elements of a
Proxel’s age vector are all multiples of the simulation
step size. On one hand, this introduces an error, espe-
cially in cases were the event that determines an age
value is known to have happened at an exact point in
time. On the other hand, this restriction to a com-
paratively small set of age values means that succes-
sors from different Proxels are likely to have a com-
mon marking and age vector. Thus they can be merged,
reducing the number of Proxels to be processed and
thereby increasing the approaches efficiency.

For our event-driven Proxel approach based on known
times of events, age values could and were computed
exactly (within the limits of IEEE 754 floating point
numbers). It is therefore of interest, how an artificial
rounding of these values to multiples of a given step
size may influence the method, both by decreasing its
accuracy, but also by allowing more merging opportu-
nities.

Therefore, we simulated our “Tester” model using first
a normal event-driven Proxel approach as detailed in
this paper. Then, we performed the same experiment
using an event-driven Proxel simulator that was modi-
fied to artificially round the age values of all Proxels to
the nearest multiple of the step size used for integration.

For each step size, the computation time of the two al-

0 1 2 3 4 5 6 7 8 9 10
53

53.5

54

54.5

55

Normal Event-
Driven Proxel

Event-Driven
Proxel with
Rounded Ages

Integration Step Size

#
D

e
fe

ct
iv

e
s

fr
o

m
 M

a
ch

in
e

 1

Fig. 8 Computed simulation result of the “Tester”
model for different trace lengths.

gorithms did not differ by more then one percent and
thus the data on this minor difference is not reproduced
here. Apparently, the potential for merging Proxels was
not increased through the rounding of the age values.
Figure 8 shows the simulation result computed by both
algorithms for different integration step sizes (and thus,
different values to round the age values to). While the
value computed by the usual event-driven Proxel con-
verges quickly (i.e. for comparatively big step sizes) to
a single result, the approach with introduced age round-
ing converges to the same value much slower, compa-
rable to the standard Proxel approach (cf. Figure 5).

Thus, the rounding of age value negatively impacts the
result accuracy strongly, without providing any bene-
fits, at least for the model tested.

Aging Behavior

TReset TKeep

S
y
m

b
o
l
E
m

is
si

o
n
s

E S
o
m

e
E A

ll Modified
Forward

Event
Driven
Proxel

? Modified
Proxel

Fig. 9 Extended classification of HnMMs along with
the corresponding well-adapted analysis algorithms.

5 Conclusion
In this paper, we introduced an optimized solution al-
gorithm for the analysis of the (Eall, Tkeep) subclass
of Hidden non-Markovian Models. The experiments
showed that the new event-driven Proxel approach can
speed up the analysis of this well-defined and practi-
cally useful class of HnMMs remarkably.

This makes it less time-consuming to obtain analysis
results for existing models. It also makes analysis of
more complex and thus more realistic models possi-

ble, allowing insight into the internal behavior of these
hidden systems for the very first time. Finally, the ap-
proach does not require any manual tuning – while the
previously-used approach requires a manual tuning of
the simulation time step – , making it less demanding
to use by practitioners.

This increased feasibility of analyzing HnMMs is an-
other step towards analyzing more complex and thereby
more realistic models and thereby another step towards
practical applicability.

Future Work

As suggested in section 3.4, similarly efficient algo-
rithms may exist for other subclasses of the HnMMs
and are the subject of ongoing research. A particular fo-
cus is set on finding a more efficient analysis algorithm
for the class of (Esome, Treset) (cf. Figure 9), because
these models are currently analyzed with the modified
Proxel HnMM solver, but exhibit additional restrictions
that are not currently exploited.

6 References
[1] Robert Buchholz, Claudia Krull, Thomas Strigl,

and Graham Horton. Using hidden non-
markovian models to reconstruct system behavior
in partially-observable systems. In 3rd Interna-
tional ICST Conference on Simulation Tools and
Techniques, 2010.

[2] Lawrence R. Rabiner. A tutorial on hid-
den markov models and selected applications in
speech recognition. Proceedings of the IEEE,
77(2):257–286, February 1989.

[3] Felix Salfner. Modeling event-driven time se-
ries with generalized hidden semi-markov mod-
els. Technical report, Humboldt-Universität zu
Berlin, 2006.

[4] Claudia Krull and Graham Horton. The effect of
rare events on the evaluation and decoding of hid-
den non-markovian models. In Proceedings of the
7th International Workshop on Rare Event Simu-
lation (RESIM 2008), Rennes, France, September
2008.

[5] Claudia Krull and Graham Horton. Hidden non-
markovian models: Formalization and solution
approaches. In Proceedings of 6th Vienna Inter-
national Conference on Mathematical Modelling,
Vienna, Austria, February 2009.

[6] Graham Horton. A new paradigm for the numeri-
cal simulation of stochastic petri nets with general
firing times. In European Simulation Symposium,
Dresden, Germany, October 2002. SCS European
Publishing House.

[7] Sanja Lazarova-Molnar. The Proxel-Based
Method: Formalisation, Analysis and Applica-
tions. PhD thesis, Otto-von-Guericke Universität
Magdeburg, 2005.

[8] Claudia Krull and Graham Horton. Solving hid-
den non-markovian models: How to compute con-
ditional state change probabilities. In 21st Euro-
pean Modeling and Simulation Symposium, Santa
Cruz de Teneriffe, Spain, September 2009.

[9] Gernot A. Fink. Markov Models for Pattern
Recognition, chapter 7, page 121. Springer Berlin
Heidelberg, 2008.

[10] Claudia Krull, Robert Buchholz, and Graham
Horton. Improving the efficiency of the proxel
method by using individual time steps. In The
16th International Conference on ANALYTICAL
and STOCHASTIC MODELLING TECHNIQUES
and APPLICATIONS, pages 116–130. Springer-
Verlag Berlin Heidelberg, 2009.

[11] Robert Buchholz. Improving the efficiency of
the proxel method by using variable time steps.
Master’s thesis, Otto-von-Guericke Universität
Magdeburg, 2008.

