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Abstract 

The class of (m,k)-methods is described. A second order L-stable method is 
created for resolving stiff autonomous problems. An algorithm for hybrid 
systems is developed that takes into account the guard condition when selecting 
the integration step. To show how the algorithm works a hybrid system of two 
oscillating masses on springs is considered. 
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1 Introduction 
Existence of events, meaning the existence of points 
of discontinuity in first derivatives of phase variables 
[1–3], is a feature of many engineering problems. 
Such combined discrete-continuous system are called 
hybrid or systems with switching [1]. Events fire in 
time moments matching to zeros of some algebraic 
function there. In many cases the situation is 
aggravated by stiffness and large size of a problem 
under consideration. When solving a Cauchy task for 
stiff systems of ordinary differential equations of large 
dimension, decomposition of Jacobi matrix consumes 
the main computing resources [4–6]. Therefore 
efficiency of the integration algorithm can be 
significantly enhanced by freezing Jacobi matrix, that 
is, by applying one matrix for several integration steps 
[7]. 

The second order of precision L-stable (2,1) method is 
developed here with freezing of both analytical, and 
numerical Jacobi matrix. The method is applicable to 
solving hybrid problems, including stiff ones. 

2 The second order of accuracy L-stable 
method 
A class of (m,k)-methods is proposed in [5–6] for 
numerical resolving of Cauchy task for stiff systems 
of ordinary differential equations 
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where y  and f  are real N -dimensional vector-
functions, t  is an independent variable. From the 
point of view of computer implementation (m,k)-
methods are as simple as Rosenbrock type schemas 
[8]. However, unlike Rosenbrock type methods, it is 
significantly easier to carry out the Jacobi matrix 
freezing task in this class, as well as to make its 
numerical approximation. Besides, (m,k)-methods 
have better properties of accuracy and stability with a 
slight increase of computing resources. Using of an 
autonomous task (1) does not reduce commonness, 
because a non-autonomous task can always be 
transformed into the autonomous one by 
implementing an additional variable. 

The (m,k)-methods class is defined as follows. Let 
positive integer numbers m  and k  be set up, k m . 
Let us denote a set of integers i , 1 i m   as mM , 
and as kM  and iJ  we denote the subsets of mM , 
2 i m  , like 
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Then (m,k)-methods can be presented as [5] 
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The set iJ , 2 i m  , is intended to eliminate "extra" 

ij  coefficients, which cannot affect the properties of 
the accuracy and stability (2) and which are linearly 
expressed through other coefficients. Note that 
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to significant difficulties when building specific 
numerical formulas just because of the existence of 
the "extra" coefficients. Note also that one constant 
m , a number of stages, will be enough in traditional 
one-step methods to describe computational cost per 
step of integration, because in these methods each 
stage is accompanied by mandatory calculation of the 
right part of the task (1). There are two kinds of stages 
in the methods (2). Some require calculation of the 
right part, and the others do not. As a result, in (2) 
description of the computational cost per step requires 
two constants, m  and k . Cost per step is as follows. 
Jacobi matrix is calculated once and decomposition of 
matrix nD  is carried out. The function f  is 
calculated k  times, and m  times the reverse in the 
Gauss method is carried out. In the case of k m  and 

0ij   numerical schemes (2) match with 
Rosenbrock type methods [4, 8]. In remaining cases 
these are the other methods with better properties. 

To solve the problem (1) let us consider the (2,1) 
schema looking like 
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where 1k  and 2k  are the stages of the method; 

n nD E ahA  , E  is a single matrix, h  is step, nA  is 
some matrix presentable in the form 

2( )n n nA f hB O h   ,  n nf f y y     is the 
Jacobi matrix of the system (1), nB  is step 
independent arbitrary matrix, and 1p  and 2p  are 
some numerical coefficients. Using of matrix nA  in 
the above presented form allows to apply (3) with the 
freezing both analytical and numerical Jacobi matrix 
[7]. In the case of usage of the Jacobi matrix n kf   



calculated k  steps ago, we have the n n nB kf f  , 

 2 2
n nf f y y    . If Jacobi matrix is calculated 

numerically with step j jr c h , where jc  are some 

constants, then elements ,n ijb  of matrix nB  look like 

 2 2
, 0.5n ij j i n jb c f y y   . In calculations the 

numerical differentiation step jr  is defined according 

to the formula  14 7max 10 , 10j jr y  . 

We shall get coefficients of the second order L-stable 
numerical schema (3) and inequality for the 
calculation accuracy monitoring. Decomposition of 
the exact solution  1ny t   into Taylor sequence 

around the point nt  up to members with 3h  has a form 
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where elementary differentials f , f f , 2f f  and 
2f f  are calculated on the exact solution  ny t . To 

find coefficients a , 1p  and 2p  of the schema (3) we 
write decompositions of stages 1k  and 2k  into Taylor 
sequences around the point ny  up to members with 

3h  inclusively and put into (3). Obtain 
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where elementary differentials nf , n nf f , 2
n nf f , 

2
n nf f  and n nB f  are calculated on the approximate 

solution ny . Assuming  n ny y t  and comparing (4) 

and (5) up to members with 2h  inclusively, we get the 
second order of accuracy conditions for the schema 
(3), that is 

 1 2 1 21 2 0 5p p ap ap        (6) 

Let us explore the stability of numerical formula (3). 
Applying it to the problem y y  ,   00y y , 

 Re 0  , we get  1n ny Q x y  , x h , where 
the function of stability is 
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. Then the schema (3) will be L-stable if 1p a . 
Substituting this equation in (6), we get a set of 
coefficients 1p a , and 2 1p a  , where a  is 
determined from the condition of L-stability 

2 2 0.5 0a a   . Comparing (4) and (5) up to 

members with 3h  inclusively we get that the local 
error n  of the numerical scheme (3) has the form 

 
23 2

4

[( 1/ 3) / 6

0.5 ] ( )
n

n

h a f f ff

B f O h

    

 
 (7) 

Equation 2 2 0.5 0a a    has two roots 

1 1 0.5 2a    and 2 1 0.5 2a   . Select 1a a , as 
in this case the coefficient in the main member 
  3 21 3a h f f  of error (7) is less. 

Monitoring of calculation accuracy of the numerical 
scheme (3) we build on similar to [9]. We implement 
a denomination for this purpose 

1
2 1( ) ( )nj

n nv j D k k  , where 1k  and 2k  are 
calculated on formulas (3). Then according to [9] the 
inequality 

 || ( ) || 1 2n nv j j      (8) 

is needed to be checked on each step for the 
calculation accuracy monitoring, where   is the 
required precision of calculations,   is some norm in 

NR , and the integer nj  is the smallest one, which 
meets this inequality. 

3 Hybrid system 
Let us consider the Cauchy task for system ordinary 
differential equations of type 

 0 0( ) ( ) ( ) 0y f y y t y g y t         (9) 

where ( )g y t  – guard condition or nonlinear 
protector. Because many models of interest are linear 
ones, we shall consider them as most important class 
of guard conditions. Note that any nonlinear protector 
can be led to the linear view appending additional 
phase variable ( )x g y t  . As a result, task (9) can be 
rewritten as 
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Assumption here is that the guard condition is linear. 
For simplicity we will assume hereinafter that the 
original problem is scalar. However, all of the 
following considerations apply to the systems. 
Particular attention should be paid to the choice of 
method of integration. A fully implicit method cannot 
be used because it requires the calculation of ( )f y  in 
potentially dangerous area, that is, where the model is 
not defined. Explicit methods are known as those of 
low stability. Therefore here we will use L-stable 
methods. For example, consider the implicit Euler 
method, which for the task (1) is 



 1 1n n ny y hf y   . In this case the guard condition 
dynamics is described by the expression 

 1 11 1g ,p p
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where  1 1n nf f y  , 1
p

nh   foreseeable step of 
integration. Note that 1nf   is calculated at a 
potentially dangerous point. Therefore, we will check 
the guard condition dynamics with the first order of 
accuracy (1,1)-method of 1, 1 1n ny y k   , where 1k  
is defined in numerical formula (3). It is easy enough 
to see that Taylor sequence for 1, 1ny   has a view of 
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Decomposing 1ng   into the Taylor sequence around 
the point  ,n ny t  and given the linearity of ( )g y t , 
we have 
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Eventually we received dependency of 1ng   on the 

foreseeable step 1
p

nh  . 

Theorem [1]. The selection of step by the formula 
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where  0, 1   provides behaviour of guard 
condition dynamics as of a stable linear system 
approaching the surface ( ) 0g y t  . Besides, if 

0 0( ) 0g y t  , then ( ) 0n ng y t   for every n . 

Proof. Substituting (12) in (11), we have 1n ng g  . 
Converting recurrently this expression we get 

1
1 0

n
ng g 
  . Given that 1  , then 0ng   takes 

place when n  . Besides, from ratio 0   
follows that function ng  does not change its sign. 
Therefore, when 0 0g  , 0ng   will be valid for 
every n . Then the guard condition will never cross 

potentially dangerous area ( ) 0n ng y t  , that 
completes the proof. 

Let the solution ny  in the point tn be calculated with 
step nh . Besides, values of method (3) stages 1k  and 

2k  are known. Then the integration algorithm taking 
into account the forecast of step through the guard 
condition is as follows: 

1. ( )n n ng g y t  , ( )n n ng y g y t y      , 
( )n n ng t g y t t       are calculated. 

2. Step 1
p

nh   is calculated by formula (12). 

3. A new step 1nh   is calculated by the formula 

 1 1 1min ,p pr
n n nh h h   , where 1

pr
nh   is found from 

inequality (8). As soon as    2
nv j O h , then 

foreseeable step 1
pr

nh   on accuracy will be defined by 

formula 1
pr

nnh qh  , where q  is set up by the equation 

 2
nq v j  . 

4. Runs the next step of integration. 

To show how the algorithm works a typical hybrid 
system of two oscillating masses on springs is 
considered [11]. System can be in one of the two local 
states: "Separately" and "Together". A System of 
algebra-differential equations describes behaviour of 
the system in each of the states. 

Provided   1 1 2 2 1 1 2s abs k n k n x k k     we have: 
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Provided    1 2 1 2x x and v v   we have: 
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where 1m , 2m  are masses of loads; 1k , 2k  are 
stiffness of springs; 1n , 2n  are neutral coordinates of 



loads; 1x , 2x  are coordinates of loads; 1v , 2v  are 
speeds of loads; 1a , 2a  are accelerations of loads; s  
is total stiffness of springs in the state "Together". 

The computer model of system of two oscillating 
masses on springs, written down in language LISMA 
[12], is presented in Fig. 1. 

 
Fig. 1 Computer model of the hybrid two-mass system 

in LISMA 

Results of analysis computer model by ISMA 
instrumental environment [11] with the detection 
algorithm developed (Fig. 2) match with results of 
calculation of the reference model in the system 
HyVisual [10]. 

 
Fig. 2 Dynamic of the hybrid two-mass system 

Traditional analysis of the system without detection 
algorithm leads to low-quality results (Fig. 3). 

 
Fig. 3 Results of analysis two-mass system without 

detection algorithm 

4 Conclusion 
The proposed way of predicting the step taking into 
account guard conditions extends to all (m,k)-schemas 
and Rosenbrock type methods. For prediction of step 
taking into account the guard condition the second 
order of accuracy L-stable method (3) can be used, 
because it needs information only at the current point. 
Constructively proved efficiency of the developed and 
integrated into ISMA environment algorithms. 
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