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Abstract  

Packed bed chromatography is commonly applied for the separation of large 
molecules in biopharmaceutical industry. A technical chromatography system is 
typically composed of a cylindrical column that is filled with porous spheres. 
Particularly in small columns, the impacts of inhomogeneous packing and wall 
effects on separation performance can be quite significant. We hence study 
convection, diffusion and adsorption in three-dimensional sphere packings. 
Random packings are externally generated and imported into COMSOL where 
the model equations are easy to implement. However, the COMSOL algorithms 
for automatic meshing and for iteratively solving the resulting equation systems 
fail to work with default settings. We have previously established a semi-
automated and half-manual meshing procedure that works with the direct 
PARDISO solver. The present contribution addresses the evaluation and 
optimization of the iterative equation solvers that are provided by COMSOL for 
the given spatial geometry with up to six million degrees of freedom. The given 
results illustrate that we can iteratively solve systems with up to 600 instead of 
only 150 spheres using less memory and less computational time. 
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1 Introduction 

Packed bed chromatography is commonly applied for 
the separation of large molecules in biopharmaceutical 
industry. A technical chromatography system is 
typically composed of a cylindrical column that is 
filled with porous spheres, also referred to as beads 
[1]. These systems are usually analyzed and optimized 
on small scales in order to safe valuable material. 
However, the impacts of inhomogeneous packing and 
wall effects on band spreading and consequently on 
separation performance are much more significant in 
small columns. We hence study convection, diffusion 
and adsorption in three-dimensional sphere packings. 

Our model based studies are performed with 
COMSOL 3.5a on a PC with 16 compute cores and 64 
GB of main memory. On this machine, COMSOL can 
handle up to 600 spheres. The random packings are 
externally generated with a self-written MATLAB 
code according to the algorithm by Mueller [2] and 
imported into COMSOL multiphysics [3]. The 
differential equations and boundary conditions for 
flow profile as well as for the convection-diffusion-
adsorption problem on this geometry are easy to 
implement in COMSOL. However, the provided 
algorithms for automatic meshing and for iteratively 
solving the resulting equation systems fail to work 
with their default settings.  

We have established a semi-automated and half-
manual meshing procedure that works with the direct 
PARDISO solver, as reported in a previous 
publication [3]. However, the spatially discretized 
system has more than six million degrees of freedom, 
and in this region iterative solvers are usually more 
efficient. The present contribution is, hence, focused 
on enabling the application and on evaluating and 
optimizing the performance of the various iterative 
equation solvers that are provided by COMSOL for 
the given spatial geometry. 

2 Theory 

In this section we briefly introduce the general 
approach for solving multiphysics problems with 
COMSOL. The provided linear equation solvers and 
preconditioners are described in more detail and 
compared with respect to their commonalities and 
differences. The most important options and settings 
and their default settings in COMSOL are critically 
discussed in section 4. 

2.1 COMSOL multiphysics 

COMSOL multiphysics is a graphical simulation 
environment for solving models that are internally 
defined by partial differential equations (PDE) on 
spatially structured domains. The PDE are discretized 
in the space variables using the Finite Element (FE) 
method, and time variant problems are subsequently 

integrated with the implicit Backward Differentiation 
Formulas (BDF) method. Each time step yields a non-
linear equation system that is linearized and iteratively 
solved by Newton´s method. A large fraction of the 
overall computational effort is spent for repeatedly 
solving these linear systems, because two or three 
iterative methods are effectively nested for solving the 
original PDE: 

1) Spatial discretization using the FE method 

2) Iterative time integration by the BDF method 

3) Iterative solution of the resulting non-linear 
equations systems with a Newton method 

4) Direct or iterative solution of the resulting 
linear equation systems 

2.2 Iterative equation solvers 

The speed and memory requirements of the used 
linear solver are most crucial for the efficiency of the 
entire model solution procedure. Direct equation 
solvers are good for small and medium sized 
problems, but cannot be used for large equation 
systems, due to memory restrictions. Moreover, 
iterative methods are usually more efficient for large 
scale computations. The following iterative solvers for 
linear equation systems are implemented in 
COMSOL: 

1) Conjugate Gradient (CG) 

2) Generalized Minimal Residual (GMRES) 

3) Stabilized Bi-Conjugate Gradient (BiCGStab)  

4) Geometric Multigrid (GM) 

The first three solvers belong to the class of Krylov 
subspace methods, which develop the solution of a 
linear equation system Ax = b into a sequence of 
approximations x(k). The residuals r(k) and a series of 
Krylov subspaces Kk for the system matrix A are 
defined as follows: 

    k kr b x  A                                  (1) 
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All Krylov subspace methods have in common that 
the differences between the approximations x(k)  and 
the initial approximation x(0) are in the corresponding 
Krylov subspace Kk: 

      0 0 ,k
kx x K r A   (3) 

Moreover, in all Krylov subspace methods the kth 
residuum r(k) is orthogonal to a k-dimensional 
subspace k of Rn, where n is the number of 
unknowns of the linear equation system: 

 k
kr    (4) 



Hence, the dimension of the residual r(k) will be 
reduced by one in every iteration, and consequently 
the exact solution is found in the nth iteration at least. 

The discussed Krylov subspace methods differ in the 
choice of the subspaces and in the iterative definition 
of the approximations. Each method is designed to 
exploit specific features of the equation systems. The 
convergence of Krylov subspaces methods generally 
depends on the numerical condition and on the 
eigenvalues of the system matrix A. 

2.2.1 Conjugate Gradient (CG) 

The CG method is a Krylov subspace method with a 
so called Galerkin condition (Eq. 5). The kth residuum 
r(k) is orthogonal to the k-dimensional Krylov 
subspace Kk of the matrix A: 

    0 ,k
k kr K r   A  (5)  

The CG method solves the linear equation system 
Ax = b by minimizing a functional F(x): 

  1
, ,

2
F x x x x b  A    (6) 

This functional can be geometrically interpreted as 
n+1-dimensional paraboloid. The functional F is in 
each iteration minimized along a search direction p(k) 
starting from the previous approximation x(k). 

     1k k k
kx x s p     (7) 

Here, sk is a factor that minimizes the functional F in 
one dimension, and the directions p(k) are conjugated 
vectors: 

   1 , 0k kp p  A   (8) 

The kth approximation x(k) minimizes the functional F 
within the subspace that is spanned by all search 
directions, due to their conjugateness. 

The mathematical theory of the CG method is only 
valid for symmetric and positive definite system 
matrices A [4]. However, the method often converges 
when applied to more general linear equation systems. 
The required memory and the computational effort 
remain constant for all iterations. 

2.2.2 Generalized Minimal Residual (GMRES) 

The GMRES method also solves the linear equation 
system by minimizing a functional, namely the 
Euclidean norm of the residuum: 

  2

2
J x x b  A  (9) 

The functional J is minimized not only along the latest 
search direction, but also along all previous directions: 
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In the GMRES method the search directions p(k) are 
orthogonal scaled bases of the Krylov subspace Kk. In 
positive contrast to the CG method, the mathematical 
theory of the GMRES method is valid for all regular 
system matrices A [5]. In negative contrast to the CG 
method, the memory requirement and the 
computational effort of the GMRES method increase 
from iteration to iteration. This is mainly because all 
search directions p(k) are saved and reconsidered in 
each of the following iterations. 

The memory requirements and the computational 
effort can be reduced with the GMRES[m] method by 
restarting the algorithm after m iterations with the 
current approximation as initial value. As the CG and 
GMRES methods, the GMRES[m] method yields a 
sequence of monotone falling residuals. However, 
convergence is not guaranteed. 

2.2.3 Stabilized Bi-Conjugate Gradient 
   (BiCGStab) 

The Bi-Conjugate Gradient (BiCG) method replaces 
the Galerkin condition in the CG method with an 
oblique projection method due to which the kth 
residuum r(k) is orthogonal to the k-dimensional 
Krylov subspace of the transposed of A. 

   0( , )k T
k kr K r   A   (11) 

As in the CG method, the required memory and the 
computational effort remain constant for all iterations, 
and as in the GMRES method, the mathematical 
theory of the BiCG method is valid for all regular 
matrices A [6].  

In negative contrast to the CG and GMRES methods, 
the sequence of residuals is not monotonously 
decreasing, because the iterated approximations are 
not determined by minimizing a functional F or J, but 
computed on the basis of two residuals and two search 
directions. These residuals are constructed in the 
BiCG method such as to form a set of bi-orthogonal 
bases of the Krylov subspaces of A and AT.  

The Stabilized Bi-Conjugate Gradient (BiCGStab) 
improves the convergence of the BiCG method, and 
also avoids possible breakdowns by restarting the 
method with the current approximation as initial value 
[6]. 

2.2.4 Geometric Multigrid (GM) 

The GM method iteratively solves linear equation 
systems with a geometric reference to the spatial grid 
of the FE method. The equations are solved by 
recursively applying a sequence of two-grid schemes, 
each of which is composed of two sequential steps: 

1) Smoothing, which eliminates error fractions of 
high frequency   

2) Coarse grid correction, which removes error 
fractions of  low frequency 



The smoothing step performs several iterations of a 
conventional relaxation scheme, and the coarse grid 
correction step projects the current residual on a 
coarser grid, where the residual equation is solved for 
the coarse grid error. The estimated error is then 
transferred back to the finer grid, and used for 
improving the previous solution. Different cycle types 
can be chosen for the recursive application of the two 
grid schemes, and the V, W and F cycles are 
implemented in COMSOL.  

In contrast to the discussed Krylov subspace methods, 
the GM method yields good convergence rates that are 
independent from the spatial discretization. Hence, 
this method is particularly suitable for fine meshes, 
provided that high quality meshes are also available 
for medium and coarse spatial discretizations. 

2.3 Preconditioning 

Preconditioning is usually applied in order to improve 
the convergence rate of the Krylov subspace methods. 
Preconditioning changes important characteristics of 
the system matrix A such as the numerical condition 
and the eigenvalue spectrum. This is achieved by 
multiplying the original equation system with a 
preconditioning matrix P-1 from the left or from the 
right hand side:  

1 1x b    P A P                          (left hand side)  (12) 

1   with   y b y x    A P P    (right hand side)   (13) 

The preconditioned equation systems have the same 
solution as the original system but better numerical 
properties and consequently the solvers converge 
faster. 

The inverse P-1 of a preconditioner matrix P is often 
not efficient to compute. Consequently, the matrix 
products P-1A or AP-1 are usually not explicitly 
formed, but instead linear equation systems with the 
system matrix P are solved. These solutions must of 
course be much cheaper to compute than the original 
equation system with matrix A. At the same time, the 
preconditioner matrix P should be similar to the 
original system matrix A. There are various 
preconditioning methods with different cost to benefit 
ratios. Symmetric preconditioning is also possible in 
order to preserve theoretical requirements of the CG 
method. 

2.3.1 Jacobi and SSOR 

The Jacobi preconditioner matrix Pjac contains only 
the diagonal elements of the original system matrix A. 
This preconditioner is an exception to the rule, 
because P-1 is cheap to compute. However, Pjac is 
usually a poor approximation to A, and the numerical 
properties of the preconditioned system are 
consequently not much improved. 

The system matrix of the symmetric successive over-
relaxation (SSOR) method is a better approximation 

of A. This matrix can also be used for preconditioning 
at the cost of solving an additional linear equation 
system at each evaluation of the preconditioned 
system.  

The Jacobi and SSOR preconditioners in COMSOL 
are process matrices of the corresponding relaxation 
schemes. The same iteration schemes can also be used 
for smoothing within the GM method. However, the 
optimal relaxation factor can be different for 
preconditioning and smoothing even when solving the 
same PDE. 

2.3.2 Incomplete LU factorization (ILU) 

The complete LU factorization is a direct solution 
method that factorizes the original system A into an 
upper triangular matrix U and a lower triangular 
matrix L. The ILU preconditioner can be adjusted to 
specific demands of the applied iterative equation 
solver. Non-zero elements of the matrices L and U are 
dropped in the elimination phase of the LU 
factorization according to specific rules, for example 
the fill ratio drop rule or the threshold drop rule. Both 
rules retain the largest absolute vales in the columns 
of the matrices L and U. Diagonal elements are never 
dropped. 

In the fill ratio rule, a pre-specified fill ratio factor 
times the number of non-zero elements in each 
column of A controls the number of non-zero 
elements in the respective columns of L and U. In the 
threshold drop rule, all elements with absolute values 
below a pre-specified drop tolerance factor times the 
Euclidean norm of the corresponding column are 
dropped to zero. 

COMSOL allows to specify a desired preconditioning 
quality and to iterate the ILU preconditioning matrix. 
The preconditioner matrix can also be divided by a 
specified relaxation factor. In addition to the choice of 
a drop rule and of a relaxation parameter, COMSOL 
allows to tune the ILU preconditioner by threshold 
pivoting and by an respect pattern option. Threshold 
pivoting exchanges rows of A in order to avoid zero 
elements on the diagonal and to improve the diagonal 
dominance. The option respect pattern limits both 
drop rules by restricting the dropping of elements in 
the matrices L and U to positions where A has zero 
entries. 

The required memory, the computational effort, but 
also the quality of the ILU preconditioner decrease 
with an increasing number of zero elements in the 
factorization. Hence, a well adjusted preconditioner 
should balance the computational resources between 
the iterative solution of the preconditioned system and 
the preconditioning itself. 

2.3.3 Vanka 

The Vanka preconditioner was developed in particular 
for saddle point problems that can occur in the spatial 



discretization of PDE with the FE method. The 
resulting linear equation systems in the time 
integration are underdetermined and zeros elements 
appear on the diagonal of A. 

The Vanka preconditioner is composed of the process 
matrices of the SSOR method and of a modified 
symmetric Gauß-Seidel method [7]. The latter blocks 
the unknowns of the linear equation system by 
physical proximity, and COMSOL allows to specify 
variables that are to be used as origin for building 
these blocks. 

Vanka yields very good results as preconditioner and 
also as smoother for the GM method in solving the 
Navier-Stokes equation. The blocked versions of the 
Vanka and SSOR preconditioners are available for 
parallel computation with COMSOL. 

3 Benchmark examples  

Four benchmark examples with increasing complexity 
and 20, 50, 150 and 600 packed spheres are defined 
for successively evaluating and tuning the solver 
performance (see Fig. 1). The velocity profile of the 
buffer solvent as well as convection, diffusion, and 
adsorption of solute molecules are computed with 
COMSOL 3.5a for each of these geometries.  

 

Fig. 1 Irregular packing of 150 spherical beads in a 
cylindrical tube 

3.1 Mathematical equations 

The Navier-Stokes equations for incompressible flow 
are defined in the interstitial volume between the 
spheres ( u


: velocity, p: pressure, η: dynamic 

viscosity, ρ: fluid density): 

 
1u

p u
t





    



 
 (14) 
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 (15) 

A convection-diffusion equation is defined on the 
same domain (c: molecule concentration, D: diffusion 
coefficient): 

 cDcu
t

c



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 (16) 

Within the porous beads, Fickian diffusion is the only 
transport mechanism. In this domain, adsorption to the 
local pore walls also takes place (cp and q: molecule 
concentrations in mobile and adsorbed phase, 
De: effective diffusivity, ε: porosity, ka and 
kd: adsorption and desorption rates, qmax maximum 
capacity): 
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
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A Neumann boundary condition is imposed at the 
interface of the beads and the interstitial volume ( n


: 

outer normal vector, kf: film diffusion coefficient): 

 ( ) ( )f pn D c c u k c c       
 

 (19) 

The parameter values of the system equations and 
boundary conditions are defined in Tab. 1. 

Tab. 1 Parameter values 

Parameter Description 

u0 = 2.13e-4 m/s Normal inflow velocity 

ρ = 1.00e3 kg/m3 Density 

η = 9.50e-4 Pas Dynamic viscosity 

c0 = 7.14e-3 mol/m3 Inlet concentration 

D = 5.75e-8 m2/s Diffusion coefficient (fluid) 

De = 5.75e-8 m2/s Diffusion coefficient (pore) 

ε = 0.75 Sphere porosity 

ka = 1.14 m3/mol/s Adsorption coefficient 

kd = 2.00e-3 1/s Desorption coefficient 

kf = 6.90e-4 m/s Film diffusion coefficient 

 

In all benchmarks models, the entire column is 2.2 cm 
long, including two void regions, each of which is 
0.42 cm long. The column diameter is 1 cm, and the 
spheres diameters depend on the number of beads in 
the column: 1.07e-8 m for 20 beads, 4.46e-9 m for 50 
beads, 1.65e-9 m for 150 beads, and 4.18e-10 m for 
600 beads. 

3.2 Solution procedure 

The velocity profile can be considered time invariant 
for the studied solvent and solute properties. Hence, 
the Navier-Stokes equations for incompressible flow 
(Eq. 14-15) are first solved with a stationary solver, 



and the resulting profile is stored. The coupled 
equations for the time variant convection, diffusion 
and adsorption processes (Eq. 16-19) are then 
computed on the stored velocity profile. 

3 COMSOL options and settings 

COMSOL allows to control and tune the implemented 
algorithms with specific options and settings. The 
default values are not optimal for all problems, and the 
impact of changes is not always easy to anticipate. 

3.1 Relative tolerance 

A relative tolerance can be specified for the iterative 
linear equation solvers. However, for time variant 
problems this setting is effective only when set larger 
than the relative tolerance of the time integrator. 
Otherwise the latter is also used for the linear equation 
solver. Moreover, the specification of a relative 
tolerance for the linear equation solver is overridden 
in nonlinear stationary problems by the relative 
tolerance of Newton’s method. The default relative 
tolerance of the iterative linear equation system 
solvers, 1e-6, is four orders of magnitude larger than 
the default relative tolerance of the time integrator, 
1e-2. 

3.2 Factor in error estimate 

Another important setting of the linear equation 
system solvers in COMSOL is denoted factor in error 
estimate. According to the COMSOL online 
documentation [7] this factor is used in place of the 
numerical condition number κ(A) of the system matrix 
A for estimating the relative approximation error on 
basis of the residual r: 

 
x x r

x b



 A                                                  (20) 

Here, x and x  denote the exact and the approximated 
solution of the linear equation system. In practice, 
equation 21 allows to increase the relative tolerance of 
the solution of the linear equation system by 
increasing the factor above the actual condition of the 
matrix A. Conversely, the computational effort for 
each solution of the linear equation system increases 
with the factor in error estimate, and the default 
value, 400, can often be decreased by several orders of 
magnitude without any visible effect on the solution of 
the PDE. However, insufficient accuracy of the linear 
equation solver can cause problems with the 
convergence of the time integrator. Hence, an optimal 
choice of the factor in error estimate is intricate and 
must usually be based on a careful observation of the 
convergence rates not only of the linear equation 
solver but also of the time integrator and Newton 
solver. 

3.3 Maximum iterations 

COMSOL stops the entire solution procedure with an 
error message when the specified maximum iterations 
are exceeded. The default value, 1e3, is sufficient for 
most problems. However, the number of iterations of 
the Krylov subspace methods increases with the 
number of unknowns of the linear equation system, n, 
and hence with the number of elements in the space 
discretization of the PDE. 

The GMRES[m] method additionally allows to specify 
the number of iterations before restart. The default 
value is m = 50. The memory requirement increases 
with m, and for values above maximum iterations the 
GMRES method is effectively used. 

3.4 Preconditioning 

The Krylov subspace methods require to declare the 
preconditioning method and direction. The CG 
method is always symmetrically preconditioned, and 
the preconditioning direction only affects the accuracy 
check of the linear solver. In linear stationary 
problems, the accuracy for right hand side 
preconditioning is checked according to equation 22 
(: factor in error estimate, tol: relative tolerance of 
the linear solver):  

b x tol b     A                                               (21) 

For left hand side preconditioning the preconditioner 
matrix P occurs in the accuracy check: 

1 1b x tol b        P A P  (22) 

In nonlinear stationary or in time variant problems the 
above estimations are modified by several factors 
which for example depend on the convergence of the 
Newton solver. The best preconditioning direction 
depends on the linear solver method and also on the 
PDE and their space discretization. For example, 
preconditioning from the right hand side causes less 
computational effort for the BiCGStab method. 

The preconditioners in COMSOL have two common 
settings, the relaxation parameter and the number of 
iterations (see section 2). For the studied convection-
diffusion-adsorption problem, the Jacobi and SSOR 
preconditioners were observed to work best with 
relaxation parameters of 0.3 and 0.7, respectively. The 
performance of the ILU preconditioner showed little 
dependency on the relaxation parameter. 

The number of iterations setting specifies how often 
the preconditioner is iteratively reapplied. More 
iterations enhance the convergence of the linear 
equation solver, but on the cost of longer calculation 
times. For the studied benchmarks, the Jacobi 
preconditioner was most efficient with 2 to 5 
iterations. For all other discussed preconditioners 
more than 3 iterations did not significantly improve 
the convergence of the linear solver. 



Several additional options and settings of the ILU 
preconditioner have been introduced in section 2. The 
drop rule, the drop tolerance factor or the fill ratio 
factor, and the respect pattern option were found to be 
most important for efficiently solving the convection-
diffusion-adsorption problem. 

The default drop rule is threshold drop with a 
tolerance of 0.01. The latter can be numerically 
entered or adjusted with a slider between 0.2 and 1e-6. 
Positive numbers can be specified for the factor of the 
fill ratio rule, and 2 is the default value. Smaller drop 
tolerances or larger fill ratios yield more accurate LU 
factorizations and vice versa. The respect pattern 
option decreases the number of dropped elements, and 
consequently increases the accuracy but also the 
computational effort of the LU factorization. 

The variables setting is most important for tuning the 
performance of the Vanka preconditioner/ smoother. 
This setting specifies which variables are used for 
building the blocks of the modified Gauß-Seidel 
method, and the remaining unknowns are 
preconditioned by SSOR. For the Navier-Stokes 
equations the pressure p has been observed to be a 
good choice for the variables setting.  

4 Benchmark Results 

Iterative solvers are more memory efficient and allow 
to import, mesh and solve both the Navier-Stokes 
equations and the convection-diffusion-adsorption 
problem in COMSOL not only faster but also for 
significantly more spheres than direct solvers. 
However, adequate preconditioning of the underlying 
linear equation systems that are solved in each time 
step of the differential equation solver is crucial. 
Moreover, the default values of some algorithm 
settings in COMSOL had to be changed by up to 
several orders of magnitude in order to gain 
satisfactory numerical speed.  

4.1 Navier Stokes equations 

Tab. 2 shows the memory usage and runtimes of 
different linear solvers with optimized settings for the 
Navier-Stokes equations. The benchmark model with 
50 spheres was solved on a fine mesh with 694.284 
degrees of freedom (DoF). PARDISO is a direct 
solver, and Vanka with the pressure p specified as 
variables was found to be the most effective 
preconditioner/smoother for all applied iterative 
solvers used, namely GMRES, BiCGStab and GM. 

Good performance of all iterative solvers was 
observed with a factor in error estimate of 1. Optimal 
values of the relaxations parameter and of the number 
of iterations were also found to be 1 for the modified 
Gauß-Seidel and for the SSOR preconditioning in all 
Krylov subspace methods, namely GMRES and 
BiCGStab. However, in the GM method the Vanka 

smoother performed best with a relaxation parameter 
of 0.7. 

The GM method was applied with two meshes only, 
due to quality limitations in the coarse meshes that 
were generated by COMSOL. Two pre-smoother and 
one post-smoother steps were performed in a V-cycle, 
and the convergence of the GM method was found to 
strongly depend on the mesh quality. Unfortunately, 
both the creation of coarse meshes, and the refinement 
of coarse meshes into intermediate meshes with 
common points, which is favorable for the GM 
method, yields poor mesh qualities in COMSOL. The 
results in Tab. 2 were computed with a coarse mesh 
with minimum element quality of 0.20, and a finer 
mesh with minimum element quality of 0.25, that has 
also been used with other linear solvers. The results 
could not be improved with the GM method using 
three or more grid levels. 

Tab. 2 Memory usage and runtimes of different linear 
solvers for the Navier-Stokes equations and the 50 

sphere benchmark  

Solver Memory [GB]  Runtime [s] 

PARDISO 8,9 352 

GM 6,5 986 

GMRES 5,7 1332 

BiCGStab 4,0 1670 

 

In Tab. 2 the solvers are arranged by decreasing 
memory usage and by increasing computational time. 
The results perfectly agree with theory in that direct 
solvers outperform iterative solvers for small and 
medium sized equation systems at the cost of 
excessive memory usage. Consequently, the 600 
sphere benchmark could not be computed on a 
machine with 64 GB of physical memory with the 
direct PARDISO solver, but with the GMRES 
method. 

Tab. 4 shows the runtimes for the model with 600 
randomly packed spheres. The Navier-Stokes 
equations with 6.412.071 DoF were solved with 
individually optimized GMRES options and settings. 

4.2 Convection-diffusion-adsorption equations 

In contrast to the Navier-Stokes equations, the direct 
PARDISO solver was outperformed by the iterative 
solvers for the convection-diffusion-adsorption 
equations. The BiCGStab, GMRES and GM methods 
with optimized options and settings (see Tab. 3) are 
faster and more memory efficient than the direct 
solver for 200.000 and more DoF (see Fig. 2 and Fig. 
3). The CG method converges, though in theory only 
applicable to equation systems with symmetric 
matrices which is not given here. However, good 



convergence is only achieved with comparably short 
steps below 0.01 s of the time integrator, which result 
in non-competitive computation times for the PDE 
solution. As already discussed in the previous section, 
the GM method can be efficiently used in COMSOL 
with two meshes only. This limits the performance of 
the GM method, as can be seen from Fig. 2.  

Tab. 3 Optimized solver settings for the convection-
diffusion-adsorption equations 

Solver 
Precond./ Smooth. 

Relaxation 
factor 

Number of 
iterations 

PARDISO - - 

GMRES 
SSOR 

0.7 1 

GMRES 
SSOR blocked 

0.7 1 

GMRES 
ILU 

0.7 1 

BiCGStab 
SSOR blocked 

0.7 1 

GM 
SSOR 

 

0.7 -  0.7 
2 
- 
1 

 

In addition to Tab. 3, all solutions of the convection-
diffusion-adsorption equations were computed with a 
relative tolerance of the time integrator of 0.01, a 
relative tolerance of the linear solver of 1e-6, and a 
factor in error estimate of 1. All Krylov subspace 
methods were preconditioned from the right, and the 
ILU preconditioner was applied with a drop tolerance 
of 0.1 and a pivot threshold of 0.5. The respect pattern 
option was disabled. 

 

Fig. 2 Compute time over degrees of freedom for 
different linear solvers and preconditioners 

In theory, the computational effort for solving a linear 
equation system with N degrees of freedom increases 
with N2 for direct solvers but better for Krylov 
subspace methods. Nevertheless, the above statements 
are only valid in an asymptotic sense, and direct 
solvers can be more efficient for systems of small and 
medium size. Moreover, the performance of the 
iterative solvers varies between the different methods 
and strongly depends on the applied preconditioner. 

Fig. 2 validates the discussed trends with runtimes for 
the convection-diffusion-adsorption equations and 
irregular packings of 20, 50 and 150 spheres. Fig. 4 
illustrates that the iterative solvers are superior to the 
direct PARDISO solver also with respect to memory 
consumption. 

 

Fig. 3 Memory usage over degrees of freedom for 
different linear solvers and preconditioners 

Fig. 2 and Fig. 3 reveal that the BiCGStab method 
outperforms the GMRES method with an optimized 
SSOR preconditioner. The observed discrepancies in 
computation times and memory usage can be reduced, 
but not eliminated by using alternative preconditioners 
for the GMRES method. This trend is expected to 
continue for increasing degrees of freedom, due to 
increasing numbers of required iterations for all 
Krylov subspace methods. However, in contrast to the 
BiCGStab method, not only the computation time but 
also the memory usage of the GMRES method is 
known to increase with the number of iterations. 

Tab. 4 shows the runtimes for the model with 600 
randomly packed spheres. The convection-diffusion-
adsorption equations with 3.303.518 DoF were solved 
with individually optimized GMRES options and 
settings. 

Tab. 4 Number of iterations and runtimes for the 600 
sphere benchmark with GMRES 

Equations Iterations Runtime [h] 

  Navier-Stokes 656 5:58 

  Conv.-Diff.-Ads. 3986 11:56 

 



Fig. 4 shows a typical breakthrough curve for the 600 
sphere benchmark at the outlet of the column. The 
steepness and shape of the breakthrough curve is 
strongly determined by local inhomogeneities of the 
packing density that appear particularly at the column 
walls. 

 

Fig. 4 Integral of outlet concentration over column 
cross section as function of time 

5 Conclusions 

The given results illustrate that we can iteratively 
solve systems with up to 600 instead of only 150 
spheres using less memory and less computational 
time than the direct PARDISO solver. The GMRES 
method and the BiCGStab method were observed to 
perform significantly better than the other iterative 
solvers that are implemented in COMSOL when 
adequately preconditioned. Most crucially, the default 
values of the provided preconditioners had to be 
changed by several orders of magnitude in order to 
achieve satisfactory convergence rates. For instance, 
the factor in error estimate had to be reduced from 
400 to 1. 

Spatially resolved simulations of packed bed 
chromatography are important for analyzing and 
optimizing the performance of micro-columns with up 
to 105 beads. Systems with more beads can be 
spatially homogenized and described by the well 
known general rate model [1]. COMSOL will most 
certainly not allow to close the gap between 600 and 
105 beads, but the presented results indicate that 
simulations with some 103 beads are possible on 
machines with huge amounts of physical memory. The 
number of beads is currently limited by the user 
interface of version 3.5a, which appear to be resolved 
in version 4.0. 
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