
PERFORMANCE OF ITERATIVE EQUATION
SOLVERS FOR CONVECTION-DIFFUSION-

ADSORPTION-PROBLEMS IN THREE-
DIMENSIONAL SPHERE PACKINGS IN COMSOL

Birgit Stute1, Wolfgang Joppich2, Wolfgang Wiechert1, Eric von Lieres1

1Research Center Jülich, Institute of Biotechnology 2,
Wilhelm-Johnen-Strasse 1, 52425 Jülich, Germany

2University of Applied Sciences Bonn-Rhein-Sieg, Department of Electrical Engineering,
Mechanical Engineering and Technical Journalism, Grantham-Allee 20,

53757 Sankt Augustin, Germany

e.von.lieres@fz-juelich.de (Eric von Lieres)

Abstract

Packed bed chromatography is commonly applied for the separation of large
molecules in biopharmaceutical industry. A technical chromatography system is
typically composed of a cylindrical column that is filled with porous spheres.
Particularly in small columns, the impacts of inhomogeneous packing and wall
effects on separation performance can be quite significant. We hence study
convection, diffusion and adsorption in three-dimensional sphere packings.
Random packings are externally generated and imported into COMSOL where
the model equations are easy to implement. However, the COMSOL algorithms
for automatic meshing and for iteratively solving the resulting equation systems
fail to work with default settings. We have previously established a semi-
automated and half-manual meshing procedure that works with the direct
PARDISO solver. The present contribution addresses the evaluation and
optimization of the iterative equation solvers that are provided by COMSOL for
the given spatial geometry with up to six million degrees of freedom. The given
results illustrate that we can iteratively solve systems with up to 600 instead of
only 150 spheres using less memory and less computational time.

Keywords: sphere packing, convection-diffusion-adsorption, equation solver, COMSOL

Presenting Author’s biography

Birgit Stute received her engineering diploma from the Bonn-Rhine-Sieg
University of Applied Sciences in 2010. She is currently a technical
assistant for modeling and simulation at the Research Center Jülich,
Germany.

1 Introduction

Packed bed chromatography is commonly applied for
the separation of large molecules in biopharmaceutical
industry. A technical chromatography system is
typically composed of a cylindrical column that is
filled with porous spheres, also referred to as beads
[1]. These systems are usually analyzed and optimized
on small scales in order to safe valuable material.
However, the impacts of inhomogeneous packing and
wall effects on band spreading and consequently on
separation performance are much more significant in
small columns. We hence study convection, diffusion
and adsorption in three-dimensional sphere packings.

Our model based studies are performed with
COMSOL 3.5a on a PC with 16 compute cores and 64
GB of main memory. On this machine, COMSOL can
handle up to 600 spheres. The random packings are
externally generated with a self-written MATLAB
code according to the algorithm by Mueller [2] and
imported into COMSOL multiphysics [3]. The
differential equations and boundary conditions for
flow profile as well as for the convection-diffusion-
adsorption problem on this geometry are easy to
implement in COMSOL. However, the provided
algorithms for automatic meshing and for iteratively
solving the resulting equation systems fail to work
with their default settings.

We have established a semi-automated and half-
manual meshing procedure that works with the direct
PARDISO solver, as reported in a previous
publication [3]. However, the spatially discretized
system has more than six million degrees of freedom,
and in this region iterative solvers are usually more
efficient. The present contribution is, hence, focused
on enabling the application and on evaluating and
optimizing the performance of the various iterative
equation solvers that are provided by COMSOL for
the given spatial geometry.

2 Theory

In this section we briefly introduce the general
approach for solving multiphysics problems with
COMSOL. The provided linear equation solvers and
preconditioners are described in more detail and
compared with respect to their commonalities and
differences. The most important options and settings
and their default settings in COMSOL are critically
discussed in section 4.

2.1 COMSOL multiphysics

COMSOL multiphysics is a graphical simulation
environment for solving models that are internally
defined by partial differential equations (PDE) on
spatially structured domains. The PDE are discretized
in the space variables using the Finite Element (FE)
method, and time variant problems are subsequently

integrated with the implicit Backward Differentiation
Formulas (BDF) method. Each time step yields a non-
linear equation system that is linearized and iteratively
solved by Newton´s method. A large fraction of the
overall computational effort is spent for repeatedly
solving these linear systems, because two or three
iterative methods are effectively nested for solving the
original PDE:

1) Spatial discretization using the FE method

2) Iterative time integration by the BDF method

3) Iterative solution of the resulting non-linear
equations systems with a Newton method

4) Direct or iterative solution of the resulting
linear equation systems

2.2 Iterative equation solvers

The speed and memory requirements of the used
linear solver are most crucial for the efficiency of the
entire model solution procedure. Direct equation
solvers are good for small and medium sized
problems, but cannot be used for large equation
systems, due to memory restrictions. Moreover,
iterative methods are usually more efficient for large
scale computations. The following iterative solvers for
linear equation systems are implemented in
COMSOL:

1) Conjugate Gradient (CG)

2) Generalized Minimal Residual (GMRES)

3) Stabilized Bi-Conjugate Gradient (BiCGStab)

4) Geometric Multigrid (GM)

The first three solvers belong to the class of Krylov
subspace methods, which develop the solution of a
linear equation system Ax = b into a sequence of
approximations x(k). The residuals r(k) and a series of
Krylov subspaces Kk for the system matrix A are
defined as follows:

    k kr b x  A (1)

           0 0 0 0 02 1, , , , , k
kK r span r r r r    A A A A (2)

All Krylov subspace methods have in common that
the differences between the approximations x(k) and
the initial approximation x(0) are in the corresponding
Krylov subspace Kk:

      0 0 ,k
kx x K r A  (3)

Moreover, in all Krylov subspace methods the kth
residuum r(k) is orthogonal to a k-dimensional
subspace k of Rn, where n is the number of
unknowns of the linear equation system:

 k
kr   (4)

Hence, the dimension of the residual r(k) will be
reduced by one in every iteration, and consequently
the exact solution is found in the nth iteration at least.

The discussed Krylov subspace methods differ in the
choice of the subspaces and in the iterative definition
of the approximations. Each method is designed to
exploit specific features of the equation systems. The
convergence of Krylov subspaces methods generally
depends on the numerical condition and on the
eigenvalues of the system matrix A.

2.2.1 Conjugate Gradient (CG)

The CG method is a Krylov subspace method with a
so called Galerkin condition (Eq. 5). The kth residuum
r(k) is orthogonal to the k-dimensional Krylov
subspace Kk of the matrix A:

    0 ,k
k kr K r   A (5)

The CG method solves the linear equation system
Ax = b by minimizing a functional F(x):

  1
, ,

2
F x x x x b  A (6)

This functional can be geometrically interpreted as
n+1-dimensional paraboloid. The functional F is in
each iteration minimized along a search direction p(k)
starting from the previous approximation x(k).

     1k k k
kx x s p    (7)

Here, sk is a factor that minimizes the functional F in
one dimension, and the directions p(k) are conjugated
vectors:

   1 , 0k kp p  A (8)

The kth approximation x(k) minimizes the functional F
within the subspace that is spanned by all search
directions, due to their conjugateness.

The mathematical theory of the CG method is only
valid for symmetric and positive definite system
matrices A [4]. However, the method often converges
when applied to more general linear equation systems.
The required memory and the computational effort
remain constant for all iterations.

2.2.2 Generalized Minimal Residual (GMRES)

The GMRES method also solves the linear equation
system by minimizing a functional, namely the
Euclidean norm of the residuum:

  2

2
J x x b  A (9)

The functional J is minimized not only along the latest
search direction, but also along all previous directions:

     1

1

k
k k i

i
i

x x s p



   (10)

In the GMRES method the search directions p(k) are
orthogonal scaled bases of the Krylov subspace Kk. In
positive contrast to the CG method, the mathematical
theory of the GMRES method is valid for all regular
system matrices A [5]. In negative contrast to the CG
method, the memory requirement and the
computational effort of the GMRES method increase
from iteration to iteration. This is mainly because all
search directions p(k) are saved and reconsidered in
each of the following iterations.

The memory requirements and the computational
effort can be reduced with the GMRES[m] method by
restarting the algorithm after m iterations with the
current approximation as initial value. As the CG and
GMRES methods, the GMRES[m] method yields a
sequence of monotone falling residuals. However,
convergence is not guaranteed.

2.2.3 Stabilized Bi-Conjugate Gradient
 (BiCGStab)

The Bi-Conjugate Gradient (BiCG) method replaces
the Galerkin condition in the CG method with an
oblique projection method due to which the kth
residuum r(k) is orthogonal to the k-dimensional
Krylov subspace of the transposed of A.

   0(,)k T
k kr K r   A (11)

As in the CG method, the required memory and the
computational effort remain constant for all iterations,
and as in the GMRES method, the mathematical
theory of the BiCG method is valid for all regular
matrices A [6].

In negative contrast to the CG and GMRES methods,
the sequence of residuals is not monotonously
decreasing, because the iterated approximations are
not determined by minimizing a functional F or J, but
computed on the basis of two residuals and two search
directions. These residuals are constructed in the
BiCG method such as to form a set of bi-orthogonal
bases of the Krylov subspaces of A and AT.

The Stabilized Bi-Conjugate Gradient (BiCGStab)
improves the convergence of the BiCG method, and
also avoids possible breakdowns by restarting the
method with the current approximation as initial value
[6].

2.2.4 Geometric Multigrid (GM)

The GM method iteratively solves linear equation
systems with a geometric reference to the spatial grid
of the FE method. The equations are solved by
recursively applying a sequence of two-grid schemes,
each of which is composed of two sequential steps:

1) Smoothing, which eliminates error fractions of
high frequency

2) Coarse grid correction, which removes error
fractions of low frequency

The smoothing step performs several iterations of a
conventional relaxation scheme, and the coarse grid
correction step projects the current residual on a
coarser grid, where the residual equation is solved for
the coarse grid error. The estimated error is then
transferred back to the finer grid, and used for
improving the previous solution. Different cycle types
can be chosen for the recursive application of the two
grid schemes, and the V, W and F cycles are
implemented in COMSOL.

In contrast to the discussed Krylov subspace methods,
the GM method yields good convergence rates that are
independent from the spatial discretization. Hence,
this method is particularly suitable for fine meshes,
provided that high quality meshes are also available
for medium and coarse spatial discretizations.

2.3 Preconditioning

Preconditioning is usually applied in order to improve
the convergence rate of the Krylov subspace methods.
Preconditioning changes important characteristics of
the system matrix A such as the numerical condition
and the eigenvalue spectrum. This is achieved by
multiplying the original equation system with a
preconditioning matrix P-1 from the left or from the
right hand side:

1 1x b    P A P (left hand side) (12)

1 with y b y x    A P P (right hand side) (13)

The preconditioned equation systems have the same
solution as the original system but better numerical
properties and consequently the solvers converge
faster.

The inverse P-1 of a preconditioner matrix P is often
not efficient to compute. Consequently, the matrix
products P-1A or AP-1 are usually not explicitly
formed, but instead linear equation systems with the
system matrix P are solved. These solutions must of
course be much cheaper to compute than the original
equation system with matrix A. At the same time, the
preconditioner matrix P should be similar to the
original system matrix A. There are various
preconditioning methods with different cost to benefit
ratios. Symmetric preconditioning is also possible in
order to preserve theoretical requirements of the CG
method.

2.3.1 Jacobi and SSOR

The Jacobi preconditioner matrix Pjac contains only
the diagonal elements of the original system matrix A.
This preconditioner is an exception to the rule,
because P-1 is cheap to compute. However, Pjac is
usually a poor approximation to A, and the numerical
properties of the preconditioned system are
consequently not much improved.

The system matrix of the symmetric successive over-
relaxation (SSOR) method is a better approximation

of A. This matrix can also be used for preconditioning
at the cost of solving an additional linear equation
system at each evaluation of the preconditioned
system.

The Jacobi and SSOR preconditioners in COMSOL
are process matrices of the corresponding relaxation
schemes. The same iteration schemes can also be used
for smoothing within the GM method. However, the
optimal relaxation factor can be different for
preconditioning and smoothing even when solving the
same PDE.

2.3.2 Incomplete LU factorization (ILU)

The complete LU factorization is a direct solution
method that factorizes the original system A into an
upper triangular matrix U and a lower triangular
matrix L. The ILU preconditioner can be adjusted to
specific demands of the applied iterative equation
solver. Non-zero elements of the matrices L and U are
dropped in the elimination phase of the LU
factorization according to specific rules, for example
the fill ratio drop rule or the threshold drop rule. Both
rules retain the largest absolute vales in the columns
of the matrices L and U. Diagonal elements are never
dropped.

In the fill ratio rule, a pre-specified fill ratio factor
times the number of non-zero elements in each
column of A controls the number of non-zero
elements in the respective columns of L and U. In the
threshold drop rule, all elements with absolute values
below a pre-specified drop tolerance factor times the
Euclidean norm of the corresponding column are
dropped to zero.

COMSOL allows to specify a desired preconditioning
quality and to iterate the ILU preconditioning matrix.
The preconditioner matrix can also be divided by a
specified relaxation factor. In addition to the choice of
a drop rule and of a relaxation parameter, COMSOL
allows to tune the ILU preconditioner by threshold
pivoting and by an respect pattern option. Threshold
pivoting exchanges rows of A in order to avoid zero
elements on the diagonal and to improve the diagonal
dominance. The option respect pattern limits both
drop rules by restricting the dropping of elements in
the matrices L and U to positions where A has zero
entries.

The required memory, the computational effort, but
also the quality of the ILU preconditioner decrease
with an increasing number of zero elements in the
factorization. Hence, a well adjusted preconditioner
should balance the computational resources between
the iterative solution of the preconditioned system and
the preconditioning itself.

2.3.3 Vanka

The Vanka preconditioner was developed in particular
for saddle point problems that can occur in the spatial

discretization of PDE with the FE method. The
resulting linear equation systems in the time
integration are underdetermined and zeros elements
appear on the diagonal of A.

The Vanka preconditioner is composed of the process
matrices of the SSOR method and of a modified
symmetric Gauß-Seidel method [7]. The latter blocks
the unknowns of the linear equation system by
physical proximity, and COMSOL allows to specify
variables that are to be used as origin for building
these blocks.

Vanka yields very good results as preconditioner and
also as smoother for the GM method in solving the
Navier-Stokes equation. The blocked versions of the
Vanka and SSOR preconditioners are available for
parallel computation with COMSOL.

3 Benchmark examples

Four benchmark examples with increasing complexity
and 20, 50, 150 and 600 packed spheres are defined
for successively evaluating and tuning the solver
performance (see Fig. 1). The velocity profile of the
buffer solvent as well as convection, diffusion, and
adsorption of solute molecules are computed with
COMSOL 3.5a for each of these geometries.

Fig. 1 Irregular packing of 150 spherical beads in a
cylindrical tube

3.1 Mathematical equations

The Navier-Stokes equations for incompressible flow
are defined in the interstitial volume between the
spheres (u


: velocity, p: pressure, η: dynamic

viscosity, ρ: fluid density):

1u

p u
t





    



 
 (14)

 0u 


 (15)

A convection-diffusion equation is defined on the
same domain (c: molecule concentration, D: diffusion
coefficient):

 cDcu
t

c



 

 (16)

Within the porous beads, Fickian diffusion is the only
transport mechanism. In this domain, adsorption to the
local pore walls also takes place (cp and q: molecule
concentrations in mobile and adsorbed phase,
De: effective diffusivity, ε: porosity, ka and
kd: adsorption and desorption rates, qmax maximum
capacity):

1p

e p

c q
D c

t t




  
   

 
 (17)

  maxa p d

q
k c q q k q

t


     


 (18)

A Neumann boundary condition is imposed at the
interface of the beads and the interstitial volume (n


:

outer normal vector, kf: film diffusion coefficient):

 () ()f pn D c c u k c c       
 

 (19)

The parameter values of the system equations and
boundary conditions are defined in Tab. 1.

Tab. 1 Parameter values

Parameter Description

u0 = 2.13e-4 m/s Normal inflow velocity

ρ = 1.00e3 kg/m3 Density

η = 9.50e-4 Pas Dynamic viscosity

c0 = 7.14e-3 mol/m3 Inlet concentration

D = 5.75e-8 m2/s Diffusion coefficient (fluid)

De = 5.75e-8 m2/s Diffusion coefficient (pore)

ε = 0.75 Sphere porosity

ka = 1.14 m3/mol/s Adsorption coefficient

kd = 2.00e-3 1/s Desorption coefficient

kf = 6.90e-4 m/s Film diffusion coefficient

In all benchmarks models, the entire column is 2.2 cm
long, including two void regions, each of which is
0.42 cm long. The column diameter is 1 cm, and the
spheres diameters depend on the number of beads in
the column: 1.07e-8 m for 20 beads, 4.46e-9 m for 50
beads, 1.65e-9 m for 150 beads, and 4.18e-10 m for
600 beads.

3.2 Solution procedure

The velocity profile can be considered time invariant
for the studied solvent and solute properties. Hence,
the Navier-Stokes equations for incompressible flow
(Eq. 14-15) are first solved with a stationary solver,

and the resulting profile is stored. The coupled
equations for the time variant convection, diffusion
and adsorption processes (Eq. 16-19) are then
computed on the stored velocity profile.

3 COMSOL options and settings

COMSOL allows to control and tune the implemented
algorithms with specific options and settings. The
default values are not optimal for all problems, and the
impact of changes is not always easy to anticipate.

3.1 Relative tolerance

A relative tolerance can be specified for the iterative
linear equation solvers. However, for time variant
problems this setting is effective only when set larger
than the relative tolerance of the time integrator.
Otherwise the latter is also used for the linear equation
solver. Moreover, the specification of a relative
tolerance for the linear equation solver is overridden
in nonlinear stationary problems by the relative
tolerance of Newton’s method. The default relative
tolerance of the iterative linear equation system
solvers, 1e-6, is four orders of magnitude larger than
the default relative tolerance of the time integrator,
1e-2.

3.2 Factor in error estimate

Another important setting of the linear equation
system solvers in COMSOL is denoted factor in error
estimate. According to the COMSOL online
documentation [7] this factor is used in place of the
numerical condition number κ(A) of the system matrix
A for estimating the relative approximation error on
basis of the residual r:

 
x x r

x b



 A (20)

Here, x and x denote the exact and the approximated
solution of the linear equation system. In practice,
equation 21 allows to increase the relative tolerance of
the solution of the linear equation system by
increasing the factor above the actual condition of the
matrix A. Conversely, the computational effort for
each solution of the linear equation system increases
with the factor in error estimate, and the default
value, 400, can often be decreased by several orders of
magnitude without any visible effect on the solution of
the PDE. However, insufficient accuracy of the linear
equation solver can cause problems with the
convergence of the time integrator. Hence, an optimal
choice of the factor in error estimate is intricate and
must usually be based on a careful observation of the
convergence rates not only of the linear equation
solver but also of the time integrator and Newton
solver.

3.3 Maximum iterations

COMSOL stops the entire solution procedure with an
error message when the specified maximum iterations
are exceeded. The default value, 1e3, is sufficient for
most problems. However, the number of iterations of
the Krylov subspace methods increases with the
number of unknowns of the linear equation system, n,
and hence with the number of elements in the space
discretization of the PDE.

The GMRES[m] method additionally allows to specify
the number of iterations before restart. The default
value is m = 50. The memory requirement increases
with m, and for values above maximum iterations the
GMRES method is effectively used.

3.4 Preconditioning

The Krylov subspace methods require to declare the
preconditioning method and direction. The CG
method is always symmetrically preconditioned, and
the preconditioning direction only affects the accuracy
check of the linear solver. In linear stationary
problems, the accuracy for right hand side
preconditioning is checked according to equation 22
(: factor in error estimate, tol: relative tolerance of
the linear solver):

b x tol b     A (21)

For left hand side preconditioning the preconditioner
matrix P occurs in the accuracy check:

1 1b x tol b        P A P (22)

In nonlinear stationary or in time variant problems the
above estimations are modified by several factors
which for example depend on the convergence of the
Newton solver. The best preconditioning direction
depends on the linear solver method and also on the
PDE and their space discretization. For example,
preconditioning from the right hand side causes less
computational effort for the BiCGStab method.

The preconditioners in COMSOL have two common
settings, the relaxation parameter and the number of
iterations (see section 2). For the studied convection-
diffusion-adsorption problem, the Jacobi and SSOR
preconditioners were observed to work best with
relaxation parameters of 0.3 and 0.7, respectively. The
performance of the ILU preconditioner showed little
dependency on the relaxation parameter.

The number of iterations setting specifies how often
the preconditioner is iteratively reapplied. More
iterations enhance the convergence of the linear
equation solver, but on the cost of longer calculation
times. For the studied benchmarks, the Jacobi
preconditioner was most efficient with 2 to 5
iterations. For all other discussed preconditioners
more than 3 iterations did not significantly improve
the convergence of the linear solver.

Several additional options and settings of the ILU
preconditioner have been introduced in section 2. The
drop rule, the drop tolerance factor or the fill ratio
factor, and the respect pattern option were found to be
most important for efficiently solving the convection-
diffusion-adsorption problem.

The default drop rule is threshold drop with a
tolerance of 0.01. The latter can be numerically
entered or adjusted with a slider between 0.2 and 1e-6.
Positive numbers can be specified for the factor of the
fill ratio rule, and 2 is the default value. Smaller drop
tolerances or larger fill ratios yield more accurate LU
factorizations and vice versa. The respect pattern
option decreases the number of dropped elements, and
consequently increases the accuracy but also the
computational effort of the LU factorization.

The variables setting is most important for tuning the
performance of the Vanka preconditioner/ smoother.
This setting specifies which variables are used for
building the blocks of the modified Gauß-Seidel
method, and the remaining unknowns are
preconditioned by SSOR. For the Navier-Stokes
equations the pressure p has been observed to be a
good choice for the variables setting.

4 Benchmark Results

Iterative solvers are more memory efficient and allow
to import, mesh and solve both the Navier-Stokes
equations and the convection-diffusion-adsorption
problem in COMSOL not only faster but also for
significantly more spheres than direct solvers.
However, adequate preconditioning of the underlying
linear equation systems that are solved in each time
step of the differential equation solver is crucial.
Moreover, the default values of some algorithm
settings in COMSOL had to be changed by up to
several orders of magnitude in order to gain
satisfactory numerical speed.

4.1 Navier Stokes equations

Tab. 2 shows the memory usage and runtimes of
different linear solvers with optimized settings for the
Navier-Stokes equations. The benchmark model with
50 spheres was solved on a fine mesh with 694.284
degrees of freedom (DoF). PARDISO is a direct
solver, and Vanka with the pressure p specified as
variables was found to be the most effective
preconditioner/smoother for all applied iterative
solvers used, namely GMRES, BiCGStab and GM.

Good performance of all iterative solvers was
observed with a factor in error estimate of 1. Optimal
values of the relaxations parameter and of the number
of iterations were also found to be 1 for the modified
Gauß-Seidel and for the SSOR preconditioning in all
Krylov subspace methods, namely GMRES and
BiCGStab. However, in the GM method the Vanka

smoother performed best with a relaxation parameter
of 0.7.

The GM method was applied with two meshes only,
due to quality limitations in the coarse meshes that
were generated by COMSOL. Two pre-smoother and
one post-smoother steps were performed in a V-cycle,
and the convergence of the GM method was found to
strongly depend on the mesh quality. Unfortunately,
both the creation of coarse meshes, and the refinement
of coarse meshes into intermediate meshes with
common points, which is favorable for the GM
method, yields poor mesh qualities in COMSOL. The
results in Tab. 2 were computed with a coarse mesh
with minimum element quality of 0.20, and a finer
mesh with minimum element quality of 0.25, that has
also been used with other linear solvers. The results
could not be improved with the GM method using
three or more grid levels.

Tab. 2 Memory usage and runtimes of different linear
solvers for the Navier-Stokes equations and the 50

sphere benchmark

Solver Memory [GB] Runtime [s]

PARDISO 8,9 352

GM 6,5 986

GMRES 5,7 1332

BiCGStab 4,0 1670

In Tab. 2 the solvers are arranged by decreasing
memory usage and by increasing computational time.
The results perfectly agree with theory in that direct
solvers outperform iterative solvers for small and
medium sized equation systems at the cost of
excessive memory usage. Consequently, the 600
sphere benchmark could not be computed on a
machine with 64 GB of physical memory with the
direct PARDISO solver, but with the GMRES
method.

Tab. 4 shows the runtimes for the model with 600
randomly packed spheres. The Navier-Stokes
equations with 6.412.071 DoF were solved with
individually optimized GMRES options and settings.

4.2 Convection-diffusion-adsorption equations

In contrast to the Navier-Stokes equations, the direct
PARDISO solver was outperformed by the iterative
solvers for the convection-diffusion-adsorption
equations. The BiCGStab, GMRES and GM methods
with optimized options and settings (see Tab. 3) are
faster and more memory efficient than the direct
solver for 200.000 and more DoF (see Fig. 2 and Fig.
3). The CG method converges, though in theory only
applicable to equation systems with symmetric
matrices which is not given here. However, good

convergence is only achieved with comparably short
steps below 0.01 s of the time integrator, which result
in non-competitive computation times for the PDE
solution. As already discussed in the previous section,
the GM method can be efficiently used in COMSOL
with two meshes only. This limits the performance of
the GM method, as can be seen from Fig. 2.

Tab. 3 Optimized solver settings for the convection-
diffusion-adsorption equations

Solver
Precond./ Smooth.

Relaxation
factor

Number of
iterations

PARDISO - -

GMRES
SSOR

0.7 1

GMRES
SSOR blocked

0.7 1

GMRES
ILU

0.7 1

BiCGStab
SSOR blocked

0.7 1

GM
SSOR

0.7 - 0.7
2
-
1

In addition to Tab. 3, all solutions of the convection-
diffusion-adsorption equations were computed with a
relative tolerance of the time integrator of 0.01, a
relative tolerance of the linear solver of 1e-6, and a
factor in error estimate of 1. All Krylov subspace
methods were preconditioned from the right, and the
ILU preconditioner was applied with a drop tolerance
of 0.1 and a pivot threshold of 0.5. The respect pattern
option was disabled.

Fig. 2 Compute time over degrees of freedom for
different linear solvers and preconditioners

In theory, the computational effort for solving a linear
equation system with N degrees of freedom increases
with N2 for direct solvers but better for Krylov
subspace methods. Nevertheless, the above statements
are only valid in an asymptotic sense, and direct
solvers can be more efficient for systems of small and
medium size. Moreover, the performance of the
iterative solvers varies between the different methods
and strongly depends on the applied preconditioner.

Fig. 2 validates the discussed trends with runtimes for
the convection-diffusion-adsorption equations and
irregular packings of 20, 50 and 150 spheres. Fig. 4
illustrates that the iterative solvers are superior to the
direct PARDISO solver also with respect to memory
consumption.

Fig. 3 Memory usage over degrees of freedom for
different linear solvers and preconditioners

Fig. 2 and Fig. 3 reveal that the BiCGStab method
outperforms the GMRES method with an optimized
SSOR preconditioner. The observed discrepancies in
computation times and memory usage can be reduced,
but not eliminated by using alternative preconditioners
for the GMRES method. This trend is expected to
continue for increasing degrees of freedom, due to
increasing numbers of required iterations for all
Krylov subspace methods. However, in contrast to the
BiCGStab method, not only the computation time but
also the memory usage of the GMRES method is
known to increase with the number of iterations.

Tab. 4 shows the runtimes for the model with 600
randomly packed spheres. The convection-diffusion-
adsorption equations with 3.303.518 DoF were solved
with individually optimized GMRES options and
settings.

Tab. 4 Number of iterations and runtimes for the 600
sphere benchmark with GMRES

Equations Iterations Runtime [h]

 Navier-Stokes 656 5:58

 Conv.-Diff.-Ads. 3986 11:56

Fig. 4 shows a typical breakthrough curve for the 600
sphere benchmark at the outlet of the column. The
steepness and shape of the breakthrough curve is
strongly determined by local inhomogeneities of the
packing density that appear particularly at the column
walls.

Fig. 4 Integral of outlet concentration over column
cross section as function of time

5 Conclusions

The given results illustrate that we can iteratively
solve systems with up to 600 instead of only 150
spheres using less memory and less computational
time than the direct PARDISO solver. The GMRES
method and the BiCGStab method were observed to
perform significantly better than the other iterative
solvers that are implemented in COMSOL when
adequately preconditioned. Most crucially, the default
values of the provided preconditioners had to be
changed by several orders of magnitude in order to
achieve satisfactory convergence rates. For instance,
the factor in error estimate had to be reduced from
400 to 1.

Spatially resolved simulations of packed bed
chromatography are important for analyzing and
optimizing the performance of micro-columns with up
to 105 beads. Systems with more beads can be
spatially homogenized and described by the well
known general rate model [1]. COMSOL will most
certainly not allow to close the gap between 600 and
105 beads, but the presented results indicate that
simulations with some 103 beads are possible on
machines with huge amounts of physical memory. The
number of beads is currently limited by the user
interface of version 3.5a, which appear to be resolved
in version 4.0.

6 References

[1] G. Guiochon, D. Shirazi, und A. Felinger.
Fundamentals of Preparative and nonlinear
chromatography. Elsevier Academic Press. 2006.

[2] G. Mueller. Numerically packing spheres in
cylinders. Powder Technology, 159:105-110,
2005.

[3] S. Schnittert, R. Winz, and E. von Lieres.
Development of a 3D model for packed bed liquid
chromatography in micro-columns. In D. Al-
Dabass, S. Katsikas, I. Koukos, A. Abraham, R.
Zobel, editors, Proceedings of UKSim 3rd
European Symposium on Computer Modeling and
Simulation, pages 193-197, Athens, November
25-27 2009. IEEE Computer Society, Los
Alamitos.

[4] J. R. Shewchuk. An introduction to the conjugate
gradient method. Without the agonizing pain.
Carnegie Mellon University. 1994

[5] Y. Saad, and M. H. Schultz. GMRES: A
generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J.
Sci. Stat. Comput., 7: 856-869. 1986.

[6] H. A. van der Vorst. Bi-CGSTAB: A fast and
smoothly converging variant of Bi-CG for the
solution of nonsymmetric linear systems. SIAM J.
Sci. Stat. Comput., 13: 631-644, 1992.

[7] COMSOL. COMSOL Multiphysics User Guide.
Version 3.5a. COMSOL AB, Stockholm, 2008.

