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Abstract  

The numeric treatment of boundary- and optimization problems is carried out by 

iterations. With an air resistance proportional to the square of the velocity, the 

projectile motion does not have any elementary analytic solution. In case of no 

air resistance however those solutions exist and they may be taken as tests for 

the numeric methods. The projectile motion with air resistance is characterized 

by a more steeply falling trajectory. Depending on the starting angle at constant 

initial velocity, the projectile motion as a boundary value problem and the 

maximization of the trajectory range are treated. The target deviation forms the 

functional of the boundary value problem. The algorithms consist of a modified 

Newton‟s Method, which is used to search the zero of the deviation, as well as 

of an angle correction proportional to the deviation. Optimization methods are 

the Three-Points Plan and the Method of the Golden Ratio. This method needs 

only a single new run for the comparison. During the maximization the 

uncertainty interval of the starting angle decreases iteratively by comparisons of 

the trajectory ranges. When the object hits the ground, i.e. the trajectory crosses 

the threshold zero, the simulation run is finished by a state event. The calculated 

range is then used as input parameter of the iteration. The algorithms are 

implemented in the TERMINAL section of the simulation system ACSL.  

Keywords: Projectile motion, Education, Quadratic friction, Modified Newton’s 

Method, Golden Ratio Method, Three-Points Plan. 
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1 Introduction 

The projectile motion is a suitable physical problem to 

give an introduction in iterative numeric methods for 

boundary value and optimization problems in courses. 

It is intuitively well comprehensible. The considered 

projectile motion to a target is a boundary value 

problem. The maximization of the trajectory range is 

an optimization problem. It is assumed that the air 

resistance will increase squarely with the flight 

velocity. Due to this nonlinearity there are no simple 

analytic solutions. Without air resistance the equation 

of motion problems are solvable in closed form and 

can be used to test the numeric methods. The initial 

trajectory velocity will be assumed as constant and so 

the parameter is the start angle. 

This paper will introduce two methods to solve the 

boundary value problem and furthermore two methods 

to solve the optimization problem. A simulation ends 

with the zero crossing of the altitude y , the achieved 

trajectory ranch will than be used as input for the 

algorithm.  

2 Equations of Motion  

The equations of motion can be derived from Fig. 2. 

The motions in horizontal and vertical direction are 

considered as independent. The two equations (1) are 

connected by the air resistance .2rv  
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3 Boundary Value Task 

The starting angle which leads the object to the target 

point, i.e. the boundary value 1x , is requested. This 

angle can be determined by a modified Newton‟s 

Method as well as by corrections which are 

proportional to the deviation from the target. There are 

two solutions 01  and 02 . The five steps of the 

Newton‟s Method for 
410

-accuracy are shown in 

Tab.1 and Fig.1 shows the trajectory pairs.  

 

3.1 Modified Newton’s Method 

The deviation in trajectory range 1xxu   from the 

target 1x  forms the functional of the method. It 

depends on the starting angle  , which means 

).(fu   The relevant angle )0(0    has to be 

determined, so that 0)( 0 f . We have therefore a 

zero! Because )(f  is not an analytic function, the 

derivation ddfu /'  must be replaced in Newton‟s 

Method [1] by a difference approximation. This is 

generated by an additional run before the (k+1). 

iteration step. A little changed angle )0(k  leads 

to ))0((~  kk fu  . Using )),0(( kk fu   follows 
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as approximation of the derivative [2]. The best 

approximation can be achieved with a very small  . 

Newton‟s Method has the form now 

k

kk

kk u
uu 


 ~)0()0(1   (3.2) 

The solving process alternates between the 

determination of ku  and ku~  with the Newton step 

which then delivers ).0(1k  The change is organized 

by means of an integer variable. It is terminated with 

reaching the margin of error ku .  

 

Tab. 1 Newton‟s iteration steps  

 t phi0 [deg] x y 

0 13.599 45.000 829.299 0.000 

1 16.532 59.961 709.392 0.000 

2 15.450 53.827 781.833 0.000 

3 15.086 51.960 797.589 0.000 

4 15.027 51.663 799.814 0.000 

5 15.022 51.639 799.988 0.000 

 

 

Fig. 1 Newton's target iteration 

 



 

Fig. 2 Projectile motion (target throw) 

3.2 Proportional Correction 

A very simple method is to correct the angle 

proportional to the deviation of the target. But this 

method is not as robust as Newton‟s Method.  

)( 11 xxc kkk    (3.3) 

Whether the method converges or not, heavily 

depends on the size of the correction coefficient .c  In 

the example it converges with .001,0c  

3.3 Analytical Solutions 

Without air resistance we are able to determine 

analytically both angles which hit the mark: 
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With the values above, we obtain  85,2501  degrees 

and 15,6402   degrees. The numerical Newton‟s 

iteration delivers these results beginning with 30 

degrees and end at 60 degrees after five steps. With air 

resistance, the two angles are moving closer together: 

27,3501  degrees, 64,5102  degrees. 

For the free fall case with quadratic air resistance and 

initial values 0)0( yy  , 0)0( y , there is a closed-

form solution [3]: 
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4 Optimization 

After the target throw, the objective of maximizing the 

trajectory range is now the subject of consideration. 

As optimization methods we are using the Method of 

Golden Ratio that requires only one new run each time 

and the Three-Points Plan. During the maximization 

the uncertainty interval (tolerance) of the angle is 

reduced stepwise by comparing the trajectory ranges.  

It is assumed there is a unimodal function .f  With a 

maximum at m  in the interval between a  and b , the 

function f  is then monotonically increasing between 

a  and m  and monotonically decreasing between m  

and .b  

4.1 Method of Golden Ratio  

For unimodal functions exists a process that 

determines the maximum with ))/(log( TLO  

evaluations of the function. T  is the tolerance and L  

the length of the interval. The idea is, to evaluate f  at 

two intermediate points x  and y  in the interval (with 

yx  ). If then )()( yfxf   holds, the maximum must 

lie between a  and y . But if )()( yfxf   holds, it is 

located in the interval between x  and b . If x  and y  

are in the middle range of the interval, we are able to 

halve the uncertainty interval with two evaluations, as 

showen in Fig. 3. By reducing iteratively, we get an 

interval smaller than T  with ))/(log( TLO  steps [4].  

 

Fig. 3 Method of Golden Ratio 

The Method of the Golden Ratio allows us to select 

the intermediate points x  and y  so that we are able 

to use one of the two values from the previous step 

again. The intermediate points divide the interval in a 

certain fixed ratio. x  divides the range between a  

and b  with the ratio ,p  y  does the same with the 

ratio q : 
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The value q  is the reciprocal of the golden ratio, 

which gave the method its name. 

618,02/)15( q  (4.2) 

The value p  is set as 2q . If )()( yfxf   applies, the 

new uncertainty interval lies between a  and y , x  

serves as a " y -point" for this interval, and we have to 

calculate a new " x -point". If )()( yfxf  applies, the 

new uncertainty interval is located between x  and b . 

y  serves as an " x -point" for this interval and we 

have to calculate a new " y -point".  

 

Fig. 4 Maximizing by Golden Ratio 

The iterative process reduces the interval until the 

endpoints are closely enough to each other. In this 

uncertainty interval lies the desired value.  

The angles 0a  degree and 90b degrees are the 

boundaries of the search interval here. In this case the 

values at the angles 38,34x  degrees and 62,55y  

degrees are compared in the first iteration step. The 

new search interval has a breadth of 55,62 degrees. 

How many reductions steps are needed to achieve a 

tolerance T  of the original uncertainty interval 

)( abL   with the Golden Ratio Method? For this 

consideration it‟s relevant that both possible following 

intervals have the same size, reduced by q . 

   xbay   (4.3) 

After n  steps the uncertainty interval is reduced on 

the length LqL n

n  . It is required that TLn   or 

TLqn   (4.4) 

Using the quadratic definition equation [4] for the 

golden ratio q  
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the logarithmic term (4.6) results from (4.4)  

 
 1log

/log




q

TL
n  (4.6) 

The integer variable n  is of the order   TLO /log . In 

the following we will use the common decadic 

logarithm  xlg  for numeric analysis. 

The number m  of evaluations (runs) at this method is 

2 nm , with two runs at the beginning. In the 

implementation both values )(xf  and ),( yf  which 

are to be compared, are written in the output file 

before testing the termination condition. Then the test 

is carried out with the current uncertainty interval. 

After this we decide about the new reduced 

uncertainty interval. The next greater integer value of 

(4.6) is given by the ceiling function  n : 
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LT 310  and 618,0q  leads to 17m  runs. In 

Tab. 2 the 15n  reduction steps are represented for 

an air resistance of 02,0r . To achieve a tolerance 

of LT 410 , 22m  runs would be necessary. 

These data were confirmed by simulations. Fig. 4 

shows the accompanying function curves.  

The sequence of the runs is organized by Block-IF- 

statements and an integer variable which corresponds 

to the indices of the function values )(1 xff   and 

)(2 yff  . This part of the simulation takes place in 

the TERMINAL section of the simulation system 

ACSL [6] along with the output statements and the 

termination condition.  

Tab. 2 Steps with Golden Ratio 

 f1 f2 a [deg] b [deg] 

0 441.969 392.412 0.000 90.000 

1 379.431 441.969 0.000 55.623 

2 441.969 442.969 21.246 55.623 

3 442.969 430.984 34.377 55.623 

4 445.650 442.969 34.377 47.508 

5 445.438 445.650 34.377 42.492 

6 445.650 445.062 37.477 42.492 

7 445.740 445.650 37.477 40.576 

8 445.690 445.740 37.477 39.392 

9 445.740 445.730 38.208 39.392 

10 445.731 445.740 38.208 38.940 

11 445.740 445.740 38.488 38.940 

12 445.738 445.740 38.488 38.767 

13 445.740 445.741 38.595 38.767 

14 445.741 445.741 38.661 38.767 

15 445.740 445.741 38.661 38.727 



4.2 Three-Points Plan  

This method compares three function values f  at 

equidistant points. Initially these are the value in the 

interval center 2/)(1 baf   and the two values at 

the boundaries )(2 aff   and ).(3 bff   It follows 

the comparison of  the maximum value with two new  

function values at half distances 4/)( bax  . 

Function values outside the interval are not considered 

anymore. To obtain an uncertainty interval x2  of 
nab 2/)(  , we require )32( n  values, which are 

here e.g. 17 points for .128/)( ab   The Three-Points 

Plan was also implemented on a hybrid computer [5]. 

It shall be proven that the number of evaluations is 

from the order   TLO /log  as well. The uncertainty 

interval bisects itself with every step. This decrease is 

more rapid than with the Golden Ratio Method using a 

factor 618,0 , so that 

  TL
n

2/1  (4.8) 

The distance of the borders )( abL   forms the 

initial uncertainty interval. To achieve the tolerance T  

are now  

 
2log

/log TL
n   (4.9) 

reduction steps necessary. Every step requires two 

runs, except for the beginning step which requires 

three runs in total, one for each border and one for the 

middle of the interval. This leads to 32  nm  runs. 

Again the decadic logarithm is used: 
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The tolerance of LT 310  requires 23m  runs, and 

for LT 410  are here 31m  evaluations necessary. 

This is easy to verify, because 10 steps reduces L  to 

LLL 310 101024/2    and 14 steps leads to the 

interval LLL 414 1016384/2   . 

If the maximum is in one of the borders of the search 

interval, the number of runs is nearly halved. Only the 

function values within the interval must be 

determined. In this special case is  
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With the tolerances above this would be only 13m  

(Tab. 3) and 17m  runs. Is the maximum only close 

to the border the number of runs rises again. It defines 

an area 
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Arguments outside the uncertainty interval should be 

implemented with negative function value to make 

them distinguishable. These cases exist only for the 

Three-Points Plan. The Method of the Golden Ratio 

compares only data within the interval. 

To test the Three-Points Plan for a maximum on the 

boarder, a projectile motion without air resistance   

0r  is chosen. The optimal start angle is here 45 

degrees, so that search intervals e.g. 20 degrees up to 

45 degrees or 45 degrees up to 70 degrees get the 

optimal angle at the right or left border. In Tab. 3 the 

maximum is on the left border. The pseudo-function 

values of –1.000 for 2f  indicate that the arguments 

are outside of the definition area. 

Tab. 3 Steps with Three-Points Plan 

 f2 f1 f3 a [deg] b [deg] 

0 1019.368 923.861 655.237 45.00 70.00 

1 -1.000 1019.368 995.205 38.750 51.250 

2 -1.000 1019.368 1013.309 41.875 48.125 

3 -1.000 1019.368 1017.852 43.438 46.562 

4 -1.000 1019.368 1018.989 44.219 45.781 

5 -1.000 1019.368 1019.273 44.609 45.391 

6 -1.000 1019.368 1019.344 44.805 45.195 

7 -1.000 1019.368 1019.362 44.902 45.098 

8 -1.000 1019.368 1019.366 44.951 45.049 

9 -1.000 1019.368 1019.368 44.976 45.024 

10 -1.000 1019.368 1019.368 44.988 45.012 

 

 

 

Fig. 5 Maximizing by Three-Points Plan 

For a tolerance LT 410  and a high air resistance of 

02,0r  the trajectories are given in Fig. 5. The 

smallest and largest altitude of the curves are for the 

border values 0 20 degrees and 0 70 degrees. 



4.3 Analytical Solution 

The trajectory range without air resistance 0r  is a 

known closed-form expression 

)2(sin)(
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g

v
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It reaches its maximum at 4/  , where 

1)2/(sin  . With the above parameters, the 

trajectory range is 1019.37.  For 02,0r  it is reduced 

on 455,74, the angle 0  on 38,71 degrees (see Tab. 2, 

Fig. 4 and Fig. 5). The projectile motion with air 

resistance is characterized by a more steeply falling 

trajectory. 

5 Conclusions 

Lectures on “Continuous Simulation” start with 

parameter studies by means of separate runs, iterative 

methods on the other hand require a coordinated series 

of runs. The numeric treatment of boundary- and 

optimization problems is carried out by means of such 

iterations. 

The projectile motion is an easily understandable 

physical problem that does not have any elementary 

analytical solution however due to the quadratic air 

resistance. That is why simulations are useful. The 

boundary value and optimization problems of 

projectile motion and trajectory range offer 

themselves as exemplary cases. The iterative 

numerical algorithms can be elegantly checked by the 

frictionless cases, which have closed-form solutions. 

We are considering two algorithms for both tasks. 

The algorithms are implemented in the TERMINAL 

section of the ACSL simulation system. From this 

section the program switches back to the start, the 

INITIAL section, until the current run achieves the 

termination condition.  

The order of the solution steps is given by an integer 

variable. For Newton‟s Method the variable can be of 

two values which stand for the determination of the 

deviation to the target and the approximation of the 

derivative. There are no different cases for the 

proportional correction of the boundary value, 

therefore it is a suitable exercise.  

For the optimization with the Three-Points Plan the 

variable can be of three values, which are 

corresponding to the function values to compare. 

Since the arguments can be beyond the interval in this 

case, more case distinctions are necessary. In contrast 

the Golden Ratio Method compares only two function 

values in the middle of the search interval, so that a 

consideration of the boundaries is not required. 

Particularly a former function value can be reused. 

The choice of the arguments of the Golden Ratio 

Method is also mathematically of interest. Both 

optimization methods reduce a given search interval, 

in contrast to the known Gradient Methods, which 

steps forward in direction of the gradient. 

The program structure can be transferred to other 

simulation systems if they have in addition to the  

section for numeric integration (DERIVATIVE 

section in ACSL), a section in which the logic 

operations of the methods can be carried out after a 

run. Parameters are given back to the start with 

changed values by jump statements.  

The Java based simulation system AnyLogic permits 

e.g. automatic parameter studies and also the 

optimization. Out of a MATLAB program a 

simulation with SIMULINK can be called. This is the 

most flexible way to carry out a simulation for 

different parameter values. The execution of the 

program can be controlled by IF-statements. In 

FORTRAN 77 of ACSL the logic IF-statement, the 

Block-IF-statement and the jump statement GOTO are 

in use.  

For the education a good intuitive understanding of 

the model-based physics is very important. Then all 

the attention can be focused on the simulations and 

their algorithms. 
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