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Abstract 

Current approaches to parameter estimation concentrate on finding the global optima of the  
least squares problem of likelihood functions. Due to poorly  determined parameters and noisy 
experimental data only finding the optimum does not meet the requirements of life science 
researchers. The shape of the optimum and the possibly other local optima which are almost 
as good as the global optimum are of key interest.

The algorithm described in the present contribution explores the parameter space of the 
objective function and produces a piecewise approximation of the objective function by 
quadratic functions, whereas the approximation quality can be adjusted at the cost of higher 
computational effort. In this way it  is possible to gain more information on the global 
optimum, its shape and its neighborhood. On the other hand the algorithm is not able to 
guarantee the best solution and arbitrary fine details of the objective function get lost. 
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1 Background
1.1 Motivation

Robust and efficient methods for parameter estimation 
are of key importance within the modeling and 
simulation workflow. This computational step is even 
dominant in the life sciences where it also has the 
purpose to find out if the measured data contains 
sufficient information to determine the model 
parameters at all. This contribution focuses on the 
nonlinear differential-algebraic (DAE) type of models. 
The parameter estimation step is then usually 
formulated as a nonlinear optimization problem, based 
on least squares of likelihood functions. 

In the sketched situation, this leads to substantial 
problems with poorly (if at all) determined optima, 
poor scaling, convergence of standard algorithms to 
different solutions, or even multiple local optima. 
Here, standard linearization methods (e.g., based on an 
approximated covariance matrix) can be strongly 
misleading because of the non-ellipsoidal and flat 
neighborhood of the minimized nonlinear function 
(Fig. 1). A poorly determined optimum can have a 
multi-dimensional banana shape or even worse. In 
practice, the question remains unanswered what the 
true shape of the function close to the optimum is and 
whether multiple but separated solutions exist. A 
global overview of the shape of the minimized 
function is hard to obtain in dimension >3.

Fig. 1 Nonlinear confidence regions, typical situation 
for poorly determined parameters

These characteristics can hardly be addressed by 
traditional local or even global optimization methods 
and necessitate alternative approaches. The new 
approach presented in this contribution will be a 
modification of existing global optimization 
algorithms in such a way that the global shape of the 
function can be explored rather than focusing on the 
optimum itself.

1.2 Existing methods

There are mainly two different approaches described 
for global optimization in literature [4]. Algorithms 
with a heuristic approach are, e.g., evolution strategies 
and simulated annealing. On the other hand, there are 
exact methods like complete search [11] and several 
branch and bound algorithms [2,3,5,6,8]. Exact 

methods with a branch and bound approach split the 
parameter space into smaller regions and calculate a 
lower and upper bound for each region. If an 
occurrence of the optimum can be excluded,  the 
region can be discarded.  This is the case if the so far 
found minimal value or the smallest found upper 
bound is smaller than the minimum of the lower 
bound of a region. Otherwise,  the region has to be 
split again.

There are different ways for generating lower and 
upper bounds. The upper bound for the optimum in 
the region may be a local minimum [3] or any 
function value in the region. The lower bound can be 
calculated by interval arithmetic [1] or several convex 
relaxation strategies [2,3,5].  Convex relaxation can 
only be done for optimization problems with special 
constraints or problems of special types.  Most 
important, “puristic” (i.e., non heuristic) exact 
methods are not usable with black box models,  which 
means models without any special structure of the 
underlying DAE system (e.g., pure AEs)[7]. 
Particularly, general differential equations still pose 
strong problems. 

1.3 Required Characteristics for Function 
Exploration Algorithms

The new algorithm introduced and tested in this 
contribution deals with parameter estimation in 
arbitrary DAE models. It is able to produce more 
information on the optimum than just its location. An 
approximated reconstruction of the objective function 
also gives information on the neighborhood of the 
optimum. An exploration algorithm should be able to 
deal with typical ill conditioned and non-convex 
problems. Moreover, at least some more parameters 
should be manageable with an acceptable efficiency-
to-robustness ratio than for typical exact global 
optimization algorithms.

Clearly, because no structural information on the 
model should be used (black box), a bit of the 
exactness and guaranteed success of global 
optimization algorithms has to be sacrificed. Thus, the 
new heuristics for function exploration will not 
reproduce arbitrary fine details of the original 
function. Nevertheless, it tries to resolve structural 
details with a size above some given threshold. For 
example, if the user does not expect strong 
fluctuations of the function for “small” parameter 
changes, this information will be used by the 
algorithm (cf. Fig. 3 for an example). As a drawback, 
it will not find deep holes with small diameter in an 
elsewhere plane region. For this reason, it should be 
pointed out that the new method cannot perform well 
on arbitrary test functions but rather on typical 
biological model functions with poorly determined 
nonlinear optima but rather well known qualitative 
influence of the parameters.

Last but not least,  a function exploration algorithm 
should be parallelizable to scale well for cluster 
computing.



2 Algorithm
2.1 Overview

The algorithm described in the presented work is a 
hybrid between the exact branch and bound methods 
described in [2,3,5] and a stochastic approach. It uses 
the same branch and bound approach as the exact 
methods, but it introduces a new method for 
exploration of the regions to decide whether a branch 
step or a bound step is done. Instead of a convex 
relaxation, an approximation of the objective function 
is done by quadratic regression. This is the heuristic 
step which might miss some fine structures of the 
function. 

By using an approximation for the objective function 
generated by quadratic regression, the algorithm must 
only be able to evaluate the model with a given set of 
parameters and input variables. The objective function 
is then reconstructed by approximations on the 
different branch-and-bound regions. By using adaptive 
branching, the resolution will be quite detailed close 
to the optimum. Thus, the approximations give 
extended information about its shape and multi-
modality. 

2.2 Quadratic Regression and Quality

Quadratic regression is used to approximate an 
objective function f on one every branch-and-bound 
region generated during the algorithm runtime. The 
objective function is calculated at several randomly 
chosen sample points (xi,yi) in parameter space. Eq. 1 
shows a quadratic regression model in two 
dimensions: 

bi = a0 + a1xi + a2yi + a3x
2
i + a4xiyi + a5y

2
i      (1)

This results in the following linear system matrix, 
sample vector and parameter vector:

A =





1 x1 y1 x2
1 x1 ∗ y1 y2

1

1 x2 y2 x2
2 x2 ∗ y2 y2

2

...
1 xn yn x2

n xn ∗ yn y2
n





            (2)

�b =





f(x1, y1)
f(x2, y2)

...
f(xn, yn)



 �a =





a0

a1

a2

a3

a4

a5





            (3)

The regression estimate then is well known to be:
�b = A�a ⇒ �̂a = (AT A)−1AT�b                  (4)

With the estimated parameters of the regression model 
the approximated values for the points used as 
samples can be calculated.  The quality of the 
approximation can be defined as sum of squares of the 

distances between approximated values and samples 
divided by the number of samples:

�d = A�̂a−�b qsum =
1
n
∗

n�

i=0

d2
i

            (5)

Another possibility for defining the quality is the 
maximum relative distance between approximation 
and samples. To get a relative distance the absolute 
distance is divided by the distance from the global 
minimum. For least squares problems the value of the 
global minimum is known to be zero and a scaling 
constant α is necessary to avoid division by zero. α is 
chosen as 0.1.  If the value of the global optimum is 
not known the best value msff found so far during 
algorithm runtime is used:

qmax = maxi(
�

d2
i�

(bi −msff )2 + α
)
              (6)

2.3 Algorithm - Step by Step

1. The Algorithm starts by choosing a region in 
parameter space from the list of not yet processed 
regions. In initial state there is only one entry for 
the whole examined region in this list. 

2. The objective function is approximated in this 
region by quadratic regression with a number of 
stochastic samples calculated by solving the 
objective function at randomly chosen points and 
additionally all corners of the region.  The number 
of samples depends on the number Dmodel of 
parameters of the objective function and the 
needed structural details resolution.  The number 
of corners is:

ncorners = 2Dmodel                                            (7)

The number of regression parameters can then be 
calculated by the following equation by using a 
binomial coefficient:

nqreg = 2 ∗Dmodel +
Dmodel!

2! ∗ (Dmodel − 2)!        (8)

For the experiments described in this paper the 
number of stochastic samples for quadratic 
regression is chosen as:

nsamples = ncorners + 2 ∗ nqreg                       (9)

3. The minimum of the samples is compared to the 
so far found minimal value and chosen as new so 
far found minimal value if it is smaller.

4. The minimum of the approximation is calculated.

5. If the minimum of the approximation is outside 
the processed region or if it is a saddle point then 
the minimum on the border of the processed 
region is calculated by quadratic programming 
and used as minimum of the approximation.



6. The objective function is calculated at the 
minimum of the approximation and the value is 
compared to the so far found minimal value. If it 
is smaller, than it is used as new so far found 
minimal value.

              Fig. 2 Algorithm overview

7. The quality of the approximation is determined by 
finding the maximum relative distance between 
approximated values and corresponding samples 
(Eq. 6). Close to already found optima a better 
quality of the approximation is desired and far 
away a lesser quality suffice. This is done by 
dividing each distance between approximated 
value and corresponding sample by the distance 
between sample and the best solution found so far 
(Eq. 6). 

8. The resulting quality is compared to a threshold. 
This threshold is an algorithm parameter and has 
to be chosen empirically. By this parameter the 

quality of the approximation and the necessary 
computational effort can be adjusted.

9. If the quality value is greater than the threshold 
this means the approximation is not good enough. 
The region has to be split into two new regions on 
the longest edge and saved to the list of not yet 
processed regions. The distances in parameter 
space from the the minimum of the approximation 
to the two center points of the new regions are 
calculated and the region with smaller distance is 
marked to be processed next. Then the algorithm 
starts at the beginning with choosing a region 
from the list.

10. If the quality value is smaller than the threshold, 
then the approximation is good enough, and the 
region and approximation are saved to the result 
list.

11. Afterwards, the region can be discarded because it 
is finally processed,  and the algorithm starts again 
with choosing the next region from the list until 
the list is empty.

After exploring all regions from the list of not 
processed regions, the result is a list of regions in 
parameter space with corresponding approximations 
and the local minimal value found in this region.  The 
entries with the smallest minimal values are 
candidates for the global optimum. The candidate with 
the smallest approximated optimum may be chosen as 
global optimum, or the regions with the smallest 
approximated optima may be searched by a local 
optimization algorithm to find the exact point. Most 
important, additional information generated by the 
algorithm is a piecewise approximation of the function 
by quadratic functions (Eq. 1) in such a way that 
structural details (like e.g., banana shape) close to the 
optimum can be inferred.

3 Examples
3.1 Visualizable Examples

With up to three parameters it is easy to check the 
correct functioning of the algorithm by standard 2D or 
3D visualization tools. For this reason,  the algorithm 
has first been tested with two and three dimensional 
test cases. In the present work Eq. 10 with the global 
minimum at (1,1) is used as test case:

f =
�

(Asin(ωx)− sin(x))2 x = 0..8 ∗ π
    (10)

Eq. 10 is a continuous version of a well known least 
squares problem with many local optima.  Fig. 3 shows 
the visualization of Eq. 10 with A and ω in [0,6] and 
x=2π. In the first step the approximation is calculated 
for the whole explored region. Clearly,  the global 
optimum is obtained for A=1, ω=1.

Fig. 4A shows the objective function together with the 
approximation for the whole explored region. The 
approximation does not reproduce the details of the 
objective function and in this case, the approximation 



is not good enough and the region has do be split into 
two. This is the first iteration of the algorithm.  After 
some iterations Fig. 4B shows approximation and 
objective function in a later step. This approximation 
does not satisfy the quality criteria, too, and the region 
has to be split again. 

Fig. 3 Diagram of Eq. 10

Fig. 4A Approximation in the first step, structural 
details are not resolved

Fig. 4B Approximation in a later step

Fig. 5 Subdivided parameter space after algorithm run

After the algorithm is finished, the explored region in 
parameter space is subdivided into bigger and smaller 
regions (Fig. 5).  The big regions have been discarded 
without further exploration because the global 
optimum is not expected to be in these regions. Closer 
to the optimum the regions become smaller, and the 
optimum is isolated in one region. By looking for 
small regions with a minimal value near the global 
optimum it is possible to describe the shape of the 
optimum or to find other optima that are almost as 
good as the global optimum.

Last but not least Fig. 6. is a surface diagram of all the 
approximations for processed and discarded regions. 
The objective function is reproduced, regions far away 
from the minimum lack the fine details and the regions 
around the minimum are reproduced much better. 

Fig. 6 All single region approximations: Reproduction 
of the objective function 

Fig. 7 is the visualization of an algorithm run with a 
three dimensional generalization of Rosenbrock’s 
banana function:

f = (z − x2 − y2)2 + (x + y + z)2 + 0.01(x2 + y2 + z2)
                               (11)

The optimum at the bottom of the banana with very 
small function values is surrounded by smaller regions 

global minimum



again. The sphere outside has greater function values, 
and the discarded regions are bigger.

Fig. 7 Three dimensional Rosenbrock function

3.2  ODE System Example

After the algorithm is visually checked and found 
working a more complex objective function was used 
for further assessment.  The model in Eq. 12 describes 
a reversible enzyme reaction. (Fig 8):

Ṡ = −α+ ∗ S ∗ E + α− ∗ ES  S0 = 1

ĖS = α+ ∗ S ∗ E − α− ∗ ES

−β+ ∗ ES + β− ∗ EP  ES0 = 0

˙EP = −γ+ ∗ EP + γ− ∗ E ∗ P

−β+ ∗ ES − β− ∗ EP  EP0 = 0

Ṗ = γ+ ∗ EP − γ− ∗ E ∗ P  P0 = 0

Ė = −α+ ∗ S ∗ E + α− ∗ ES

+γ+ ∗ EP − γ− ∗ E ∗ P  E0 = 1          (12)

With the two conservation equations Eq. 13 and Eq. 
14 the model can be reduced so that the DGLs for Ṗ
and Ė  can be removed:
P = S0 − ES − EP − S             (13)
E = E0 − ES − EP               (14)

Fig. 8 Single substrate mechanism for enzyme 
reaction   

The reason for choosing this example is because it is 
well known and ill conditioned.

The typical problem in life science is to find the 
parameters of the DAE model so that the solved DAE 
model fits the experimental data in the best way. To 
test the algorithm, the model is solved with a chosen 
set of parameters:

α+ = 2 β+ = 10 γ+ = 2
α− = 1 β− = 10 γ− = 1                          (15)

The quality function is defined as the sum of least 
squares of the differences between values of the 
solution with chosen parameters and the solution with 
parameters set by the algorithm. The quality function 
is the objective function for the algorithm. The model 
solution produces concentration values for 121 point 
in time in the interval [0,12]. Fig. 9 shows the model 
solved by a standard Matlab ode solver (ode45) for the 
parameters in Eq. 15.

In addition a linearized regression analysis is done to 
show the correlations between the estimated 
parameters and to judge the ill conditioness of the 
example with the chosen set of parameters.  The results 
of the regression analysis (Fig.  10/11) depends on the 
chosen parameters. With the parameters from Eq. 15 
the two rate constants β+ and β- are correlated very 
strongly as it is obvious by the degenerated ellipse 
(Fig. 10). The other parameters are not correlated too 
much because the ellipses are not degenerated. From 
the linearized confidence regions the very large error 
bars for the correlated parameters (Fig. 11) can be 
derived. The parameters are poorly determined.

Fig. 9 Concentrations for the four pools S, ES, EP 
and P against time on the x axis



Fig. 10 Correlations between parameters by linearized 
regression analysis

Fig. 11 Parameters with error bars from linearized 
regression analysis

After these preliminary stages the algorithm has 
explored the DAE model test case with different 
thresholds as algorithm parameters. It has produced  
the lists of regions with corresponding approximations 
as result. In case of a threshold of 0.3 the list contains 
888 regions with corresponding approximations.  With 
a threshold of 0.2 the list already contains 20806 
regions. The runtime of the algorithm is not yet 
comparable to other algorithms because it is 
implemented in Matlab and  thereby not optimized for 
speed. But the results for this example are produced 
with a normal quad core workstation computer. The 
longest algorithm runtime was about 8 hours. 

To check the results in higher dimensions, the 
objective function is calculate at independent and 
randomly chosen sample points in parameter space. 
The approximation is calculated at the same points in 
parameter space by finding the regions containing the 
sample points and using the corresponding quadratic 
functions. After this,  each value of the objective 
function is compared with the corresponding value of 
the approximation. The percentage differences of the 
two values of the objective function and the 
approximation are grouped to 60 intervals of the same 
size and illustrated as histogram (Fig. 12/13). Each bar 

in the histogram stands for the number of independent 
sample points with a percentage difference to the 
result of the objective function in the interval on the x-
axis.

Fig. 12 Histogram for algorithm run with threshold 0.2

Fig. 13 Histogram for algorithm run with threshold 0.3

A smaller threshold should lead to a more precise 
approximation of the objective function. In Fig. 12 it 
is obvious that much more independent samples have 
a percentage deviation smaller than 0.01 which means 
1 percent than in Fig.  13 with a higher threshold. This 
is what the threshold is expected to do as algorithm 
parameter.

4 Conclusion and Outlook
At least for dimensions with up to six parameters, the 
algorithm meets the requirements mentioned above. 
The algorithm is proofed working for three test cases.

It is a new approach for the bound step to decide the 
regions that have to be explored further. Contrary to 
global optimization algorithms,  it is possible to gain 
more information about the objective function than 
only the location of the optimum. The approximations 
for each region are gathered to an approximation of 
the whole objective function with closer fit close to 
the optimum and loose fit far away from the optimum. 
The threshold as algorithm parameter can be used to 
adjust the quality of the approximation. 

For the future it is intended to use the algorithm for 
higher dimensional problems with a practical 
background in life science. To achieve this, the 



implementation of the algorithm has to be improved 
and and the algorithm has to be extended to fully 
utilize big cluster computers. The main focus is on an 
implementation in C++ to improve speed and 
scalability.
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