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Abstract  

In this paper, we propose “Volumetric Parallel Coordinates” (VPC) as a technique to explore 
a multivariate time-varying volume dataset. Recently, this type of a large-scale dataset has 
often required a high-performance computing environment. In addition, such a dataset often 
includes multiple variables defined on high-resolution grids and thousands of time steps. We 
can make use of volume visualization, information visualization or animation techniques, 
which can handle high-resolution grids, multiple variables and time-varying datasets, 
respectively. However, there is currently no technique that visualizes a multivariate time-
varying volume dataset in a single picture, which is often a good starting point for data 
exploration. The VPC stacks parallel coordinates that represent the relation between multiple 
variables at a given time step in order to construct a volume dataset. A volume visualization 
technique can be used to visualize how the relation between variables changes over time. We 
apply the VPC to results generated from a liquid atomization simulation to confirm its 
effectiveness, and we find that the relation between the liquid curvature and the velocity 
maintains a negative correlation over time. 
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1 Introduction 
A numerical simulation is an effective tool to 
reproduce a phenomenon that is difficult to analyze 
experimentally. For example, a simulation is often 
utilized to investigate a large-scale phenomenon in 
space or a chemical experiment highly dangerous to 
the human body. Thus, a numerical simulation can be 
conducted in various kinds of research areas to 
understand a complex physics phenomenon or to 
design a mechanical product. Recently developed 
high-performance computers enable more complex, 
more precise and larger simulation models to perform 
calculations. As the result, a dataset generated by such 
computers may include multiple variables defined on 
high-resolution grids and thousands of time steps. We 
recognize that there are three key characteristics of 
such a dataset; namely, the numbers of variables, time 
steps and resolution. To understand a large-scale 
dataset with respect to all three characteristics, we 
require an effective visualization technique. Indeed, 
there are many existing efficient techniques for 
visualizing a high-resolution time-varying volume 
dataset.  

To analyze a single relation between variables or a 
temporal change in a single variable, a statistic 
technique is often utilized [1, 2]. There are few 
techniques to handle relations among multiple 
variables over time. In this paper, we propose the 
Volumetric Parallel Coordinates (VPC) as a technique 
to explore a multivariate time-varying volume dataset. 
The VPC stacks a set of parallel coordinates that 
represent relations between multiple variables at a 
given time step in order to construct a volume dataset. 
Note that a volume visualization technique can be 
used to visualize how a relation between variables 
changes over time. The rest of the paper is organized 
as follows. Section 2 briefly introduces related works 
on visualization techniques for a multivariate time-
varying volume dataset. In section 3, we describe our 
proposed technique (i.e., VPC) in three subsections. 
First, we provide a definition of the VPC, and then we 
describe a technique of converting a multivariate time-
varying volume dataset into the VPC. Finally, we 
demonstrate a graphical user interface in which a user 
can effectively manipulate the VPC. We believe that a 
graphical user interface has a considerable impact on 
data exploration. A good GUI facilitates a user in 
making discoveries. In section 4, we apply the VPC to 
results generated from a liquid atomization simulation 
to confirm the effectiveness of the technique. 

2 Related Work 
2.1 The Time Histogram 

The time histogram [2] is a technique used to analyze 
a time-varying dataset. A histogram is composed of a 
bar chart that represents a frequency distribution; it is 
called a time histogram when the distribution is along 

a time axis. This technique makes it possible to view a 
temporal change in the distribution of variable values. 
A time histogram is displayed as a 3D graph, where 
the axes are value, frequency and time. The time 
histogram can be displayed as 2D graph, where axes 
are value and time. Frequency in this case is 
represented with brightness values, colors, lights or 
shades. However, if this technique is applied to a 
multivariate time-varying volume dataset, the 
temporal change of only one variable can be obtained.  

2.2 Parallel Coordinates 

Parallel Coordinates [1] is a technique used to analyze 
a multivariate dataset. This technique makes it 
possible to analyze “the relation between variables”. 
In Parallel Coordinates, the variable axes are arranged 
in parallel so that the variable values of observing 
points are plotted on the axes, and they are connected 
using line segments. This technique makes it possible 
to display the relation between variables at the same 
time by narrowing the distance between the parallel 
axes, if the number of variables is large. In addition, 
this technique method makes it possible to analyze the 
relation between two consecutive variables intuitively. 
Fig. 1 shows a typical pattern resulting from Parallel 
Coordinates. The left image represents the negative 
correlation because the lines intersect between the two 
axes and are constricted in the middle like the red line 
in the image. The center image also represents a 
negative correlation. However, the right image 
represents a positive correlation because the lines do 
not intersect between the two axes. If this technique is 
applied to volume data, the observing point 
corresponds to a location at which the variable value 
is defined. However, when using the Parallel 
Coordinates technique, the relation between variables 
in multivariate time-varying volume data can only be 
analyzed during a single time step. 

 
Fig. 1 The typical pattern of Parallel Coordinates (left 
and center: negative relation, right: positive relation) 

2.3 3-D Parallel Coordinates 

3-D Parallel Coordinates is an extension of Parallel 
Coordinates that adds an axis orthogonal to the plane 
on which the Parallel Coordinates plot is defined. Our 
VPC can be categorized as a 3-D Parallel Coordinates 
technique because the additional axis is a time axis. 
We describe the details of VPC in Section 3. In this 
section, we introduce three 3-D Parallel Coordinates 
techniques. These techniques can be distinguished in 
terms of the use of the additional axis, the dataset used, 
and the geometry that connects each parallel 
coordinate along the additional axis.  



Honda et al. [3] proposed the 3-D Parallel 
Coordinates plot, where the additional axis represents 
the selected variables. This technique aims to clarify a 
given relation between variables. In this technique, 
there are two ways to draw polygonal lines. One 
method involves connecting line segments between 
adjacent axes at each observing point as a 
conventional Parallel Coordinates does, and the other 
method is to connect line segments on the variable 
axis at each variable. By selecting a standard variable 
and connecting line segments at each variable, 
understanding the relation between variables becomes 
intuitive.  

Rubel et al. [4] proposed a 3-D Parallel Coordinates 
technique, where the additional axis is the arbitrary 
axis of space. This technique was applied to a volume 
dataset, where the plot point is equivalent to the 
coordinates of observed points. This technique makes 
it easy to understand the difference between the 
relations among variables according to the position of 
each variable on the space of observed points.  

Wegenkittl et al. [5] have proposed a 3D Parallel 
Coordinates technique, where the additional axis is the 
time axis. Like VPC, the purpose of this technique is 
to analyze temporal changes for the entire dataset. 
However, the dataset of this technique is limited to 
cases in which a single observed point is located at 
each axis. Therefore, a single polygonal line is 
displayed at each time step. Because consecutive 
polygonal lines are connected through all time steps, 
the entire representation becomes a polygonal surface.  

2.4 An Exploration of a Multivariate Time-
Varying Volume Dataset 

Sukharev et al. [6] have proposed a mathematical 
approach to explore a multivariate time-varying 
volume dataset using a mathematical approach, where 
this approach is composed of a self-correlation 
function, a cross-correlation function and a canonical 
correlation analysis. The approach makes it possible to 
integrate variable and temporal information into one 
variable. This technique enables an exploration of the 
overall features of the multivariate time-varying 
volume dataset, since the integrated variable is 
visualized using volume rendering. However, there are 
two problems with this technique. First, it is 
impossible to analyze temporal changes in relations 
between variables using this technique. For example, a 
typical case might involve a relation between 
variables that includes negative and positive 
correlations at the beginning and end of the time 
period under investigation, respectively. The other 
problem is that it is impossible to analyze complex 
relations that may exist within a single time step. For 
example, a typical case might involve a relation 
between variables that includes negative and positive 
correlations at lower and higher values, respectively.  

Akiba et al. [7] have proposed a graphical user 
interface to explore a multivariate time-varying 

volume dataset by arranging three display windows 
that work cooperatively. The contents of the three 
display windows are Parallel Coordinates representing 
“the relation between variables”, a time histogram 
representing “the temporal change of the distribution 
of variable values” and volume rendering representing 
“the spatial distribution of data values”. This interface 
makes it possible to analyze a multivariate time-
varying volume dataset by selecting a starting point 
among ”the relation between variables”, “the temporal 
change of the distribution of variable values” and “the 
spatial distribution of data values” for analyzing by 
cooperating the three displays. In this technique, 
existing techniques are effectively combined in order 
to analyze a multivariate time-varying volume dataset. 
It is thus possible to understand relations with respect 
to the numbers of variables, time steps and resolution. 
However, it is difficult to analyze “the temporal 
change in the relation between variables” since this 
technique cannot visualize the relations between all 
variables at all time steps in a single picture, which 
may nevertheless be a good starting point for data 
exploration. 

3 Proposed Technique 
In this section, we introduce our proposed technique, 
namely, “Volumetric Parallel Coordinates” (VPC). 
This introduction is composed of three parts in which 
we present an overview of VPC, a process that 
converts a multivariate time-varying volume dataset 
into VPC data and the graphical user interface that 
facilitates data exploration using VPC. 

3.1 Volumetric Parallel Coordinates (VPC) 

The basic idea behind VPC involves stacking Parallel 
Coordinates for each time step along the time axis in 
3-D space. The time axis is configured so that it is 
vertical to the plane in which the Parallel Coordinates 
is defined (Fig. 2 (left)). We denote the set of all 
planes as VPC data. VPC data can be viewed as 
volume data, as shown in Fig. 2 (right), that can be 
visualized using volume rendering. In other words, the 
process applied in VPC consists of two steps. The first 
step is to convert a multivariate time-varying volume 
dataset into VPC data, and the second step is to 
visualize VPC data using volume rendering. 

 

 
Fig. 2 The basic idea of VPC  



VPC data includes information on relations between 
variables, which Parallel Coordinates is expected to 
provide. In addition, by adding the time axis 
perpendicular to the plane of Parallel Coordinates, 
VPC data includes information on temporal changes 
in relations between variables. In other words, VPC 
data maintain variable and temporal information. 
Therefore, visualizing VPC data using volume 
rendering makes it possible to explore “the temporal 
change of relation between variables.”  

It is also useful that using VPC data makes it possible 
to analyze the original dataset by specifying either a 
time step or a variable. First, by using the cutting 
plane that is perpendicular to the time axis and passes 
through a time step, Parallel Coordinates can be 
shown. Therefore, it is possible to analyze a relation 
between variables at a time step by displaying a 
cutting plane of VPC data. Second, by using the 
cutting plane that is perpendicular to the variable axis 
and passes through a variable, a time histogram can be 
shown (see Fig. 2). Therefore, it is possible to analyze 
a temporal change in the distribution of a variable at a 
given time step. An adequate graphical user interface 
is required in order for a user to enjoy these features 
when VPC data is provided. 

3.2 The Conversion of a Multivariate Time-
Varying Volume Dataset into VPC data 

In this section, we describe pre-processes that are 
required to construct Parallel Coordinates at each time 
step as well as the structure of VPC data. 

3.2.1 The Construction of Parallel Coordinates 

As we mentioned in section 3.1, in order to convert a 
multivariate time-varying volume dataset into VPC 
data, it is necessary to construct Parallel Coordinates 
at each time step. In this section, we describe pre-
processes for this construction.  

Binning 

As the first pre-process, binning is employed in order 
to reduce the data size required to represent Parallel 
Coordinates. Binning is a method used to express a 
dataset by the number of observed points that belong 
to a bin. By definition, a bin is an enclosed space for 
storing something in bulk, and it is an interval into 
which the domain of a variable with two or more 
observations is divided. In order to apply the binning 
to Parallel Coordinates, our technique refers to the 
method developed by Novotn\'{y} et al. [8]. The 
binning process is as follows. 

1. Divide the variable axis into b bins and divide the 
adjacent variable axes into b2 bins. Then, a bin in 
the 2-D coordinate system is defined as shown in 
Fig. 3 (left), and a bin in Parallel Coordinates is 
defined as shown in Fig. 3 (right). 

2. Count the number of line segments that belong to 
each bin c. 

3. Repeat the above treatment for all adjacent 
variable axes. If the number of variables is k, 
repeat k-1 times. 

4. Set that color and opacity of the parallelogram to 
correspond to the bin by using the counted number. 

In the case of expressing Parallel Coordinates without 
binning, the number of line segments is equivalent to 
the number of nodes n between adjacent axes. When 
the number of variables is k, the total number of line 
segments on Parallel Coordinates is (k-1)n. If we 
visualize a large-scale volume dataset using Parallel 
Coordinates, the resulting image may include enough 
cluttering to prohibit a user from easily understanding 
the dataset. However, in the case of expressing 
Parallel Coordinates with binning, the total number of 
line segments is the number of bins (k-1)b2 at 
maximum. If we adequately determine the number of 
bins, we can enjoy a Parallel Coordinates image that 
shows less clutter yet still conveys essential 
information. 

 
Fig. 3 Binning in Parallel Coordinates 

 (number of bins on the variable axis: 4)  

Biasing 

When extremely large values are included in the bins, 
the differences between other bin values are relatively 
small. As the second pre-process, biasing is employed 
in order to avoid a situation in which a change in bin 
values is not visible. In our proposed technique, 
biasing refers to the method developed by Perlin et al. 
[9]. Setting a bias value g, a bin value c, a biased bin 
value c0 and a maximum bin value for all time steps M, 
biasing according to their method is defined as follows. 
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We can bias the bin values according to their 
smallness using the correlation of bin values 
maintained by setting g>0.5. Biasing is applied after 
binning for all time steps is finished because the 
maximum bin value for all time steps M is needed to 
proceed with biasing. 

3.2.2 The Structure of VPC data 

To construct VPC data, we specify a thickness for the 
plane in which Parallel Coordinates is defined and 
arrange them without any gaps (Fig. 4) in order to 
facilitate the analysis of relations between consecutive 



time steps. A variable axis appears as a plane due to 
the thickness given to Parallel Coordinates. We call 
this plane a variable plane. We described in 3.2.1 that 
a bin corresponds to a parallelogram under Parallel 
Coordinates. A parallelogram that corresponds to a bin 
becomes a parallelepipedon, as shown in Fig. 5, 
according to the given thickness. An upper plane or 
lower plane of this parallelepipedon becomes a 
boundary face between consecutive variable planes. In 
Fig. 5, the green parallelepipedon corresponds to the 
third bin on variable A and the second bin on variable 
B of the third time step. 

 
Fig. 4 Parallel Coordinates at a given time step using 

VPC data (number of time steps: 3) 

 
Fig. 5 Bins in VPC data (number of bins on the 

variable axis: 4; number of variables: 3) 

Since a bin becomes a parallelepipedon, and regarding 
this parallelepipedon as a volume cell, VPC data 
becomes a type of volume data composed of 
parallelepipedon volume cells. Generally, a volume 
dataset can be classified into two types. One type is a 
regular grid volume dataset, and the other type is an 
irregular one. VPC data may be categorized into 
irregular grid volume data. However, unlike a typical 
irregular volume dataset, VPC data is composed of 
volume cells that may overlap, since there are 
overlapping parts on the bins under Parallel 
Coordinates processed by binning.  

3.3 The Interface to Utilize VPC data 

In this section, we describe our proposed graphical 
user interface for VPC data. Our proposed interface is 
depicted in Fig. 6. This interface has a function to 
show a volume-rendering image in order to analyze 

the spatial distribution of a multivariate time-varying 
volume dataset. In Fig. 6, the left and right sides of the 
interface are utilized to access VPC data and display 
the volume-rendering image, respectively. 

 
Fig. 6 The interface to utilize VPC data 

Recall that we explained in section 3.2.2 that VPC 
data can be viewed as an irregular grid volume data 
with possibly overlapping cells. When we visualize 
this type of volume data, special care should be taken 
to process overlapping cells. We decided to utilize the 
Particle-based Volume Rendering (PBVR) technique 
[10] since it can easily render multiple volumes that 
may have overlapping regions. PBVR is a rendering 
technique that generates particles in cells. The 
generated particle is composed of coordinates and 
colors. The data value of each color is determined by 
values in the original volume dataset. 

VPC provides a focus and context interface for 
interactive exploration of a multivariate time-varying 
volume dataset. By using the VPC, a user can 
understand an overall feature across all variables and 
all time steps as well as can focus on some specific 
regions by displaying a cutting plane of VPC data. In 
the following section, we show how the VPC interface 
works interactively through operating buttons and 
sliders displayed on the screen. 

“Display the Cutting Plane” and “Display the 
Limited Area” 

The button labeled “Display the cutting plane” limits 
the displayed VPC data in order to display Parallel 
Coordinates for a given step or a time histogram for a 
given variable. The button labeled “Display the 
limited area” relaxes these limitations in order to focus 
on several time steps or variables at a time. 

“Setting the Display Area on the Variable Axis” 

The button labeled “Setting the Display Area on the 
Variable” is utilized to select a variable and its value 
range according to a user’s preferences. In this case, 
only the bins that are included in the selected range 
are displayed. By using this function, users can select 
the nodes on which they wish to focus from the 
original volume data and analyze the temporal 
changes in relations between variables from the 
selected nodes. This function is implemented by 
creating new VPC data that includes only the cells that 



correspond to the selected bins and then rendering this 
VPC data. 

“Setting the Transfer Function” 

The button labeled “Setting the transfer function” is 
used to modify a transfer function according to which 
VPC data is rendered. The transfer function returns a 
color or opacity based on the number of nodes that are 
included in the bins. For example, users can set a low 
opacity value for the bins with very few nodes. This 
function is implementing by setting the color and 
opacity on the widget shown in Fig.7. 

 
Fig. 7 A widget to set the transfer function 

The functions described above are used to analyze 
the selected time steps or variables using VPC. Users 
can analyze “the temporal change of the relation 
between variables”, the relation among variables for a 
given time step or temporal changes in the distribution 
of a variable. 

4 Experimetal Results and Discussion 
In this section, we introduce experimental results from 
applying VPC to a simulation of liquid atomization 
and discuss these results. 

4.1 Liquid Atomization 

 

The dataset used in this experiment is the result of a 
simulation of liquid atomization and was provided by 
Dr. Junji Shinjo, a researcher in Japan Aerospace 
Exploration Agency (JAXA). Liquid atomization is a 
process by which a liquid is separated into small 
droplets; in fact, this process is the basic mechanism 
in the liquid sprayers used in everyday life. Fig. 8 
shows that the liquid surface changes at several time 
steps in the simulation dataset. There are small 
droplets surrounding the liquid column. 

 
Fig. 8 Liquid atomization 

There are four variables contained in the result data, 
including density Φ, curvature k, pressure p and 
velocity v. Density Φ is a variable that can be used to 
determine whether the relevant area contains liquid or 
gas. Its domain is [0, 1], and it is assumed that the area 
for which the density value exceeds 0.5 and 
approaches 1 corresponds to liquid. Fig. 9 shows the 
distribution of curvature, which is determined by 
volume rendering of droplets. A droplet with high 
curvature is a small droplet and vice versa, as shown 
in Fig. 9. The simulation data consists of 19 time 
steps; the size of each volume dataset 
is 1045580580 uu . 

 
Fig. 9 The distribution of curvature (close to the 

droplets) 

The temporal change in the shape of the liquid surface 
is shown in Fig. 8. In this figure, liquid is shown as 
discharging from the left side. 

4.2 The Construction of VPC Data 

We constructed VPC data that consists of five axes as 
shown in Fig. 10. The density and curvature variables 
are used as criteria according which each area is 
categorized into liquid or gas. In addition, based on 
these variables, the size of droplets is estimated.  



 
Fig. 10 VPC data that we used, with the variable axes 
arranged as follows: pressure, density, velocity and 
pressure, starting from the top. 

We arranged the variable axes in the following order: 
pressure, density, velocity, curvature and pressure, 
starting from the top. In our experiment, we used three 
PCs with Intel Core 2 Duo Processor 3.16 GHz CPU, 
NVIDIA GeForce9800GT 512 MB GPU and 4.0 GB 
of RAM. It took 96 minutes to construct the VPC data. 

We set the bias value and the number of bins on the 
variable axes at 0.8 and 64, respectively. The transfer 
function that is used to display VPC data is shown in 
Fig. 11. The density of line segments on Parallel 
Coordinates is represented as a color shade. In this 
transfer function, a white color means that the density 
of line segments is low, while dense colors indicate 
that density is high. 

 
Fig. 11 The transfer function used to display VPC data 

4.3 The Relation between Curvature and Velocity 

Fig. 12 shows VPC data with respect to the curvature 
and velocity variable planes. The upper plane 
corresponds to velocity, and the lower plane 
corresponds to curvature. This shows that the relation 
between curvature and velocity is negatively 
correlated throughout the time period under analysis, 
because VPC data is constricted in the middle, as 
indicated by the red line in Fig. 12. From this figure, 
we can hypothesize that the smaller the size of droplet 
is, the smaller the speed is.  

Fig. 13 shows that volume rendering in which colors 
and opacity indicate velocity and curvature, 
respectively. We can easily see that the speed of the 
liquid column is high, and the speed of droplets is low.  

 

 
Fig. 12 VPC data that represent the relation between 

curvature and velocity 

 
Fig. 13 The distribution of velocity of liquid 

4.4 Relation between Density and Velocity 

Fig. 14 shows bins with high velocities. Paying 
attention to the area in which the velocity becomes 
high, we see that the nodes that have higher velocities 
are located in gaseous regions. This indicates that 
velocities are high in a gaseous region that is 
generated from VPC data. 

 
Fig. 14 VPC data that represent the relation between 

density and velocity (only high-velocity bins are 
displayed) 

To confirm this hypothesis, we apply volume 
rendering to the volume dataset. Fig. 14 shows the 



volume-rendering image of the velocity data using the 
opacity map, which has a peak at the highest velocity. 
To visualize the boundary between gas and liquid, the 
volume-rendering image of the curvature data is 
superimposed. In Fig. 15, yellow and blue colors 
represent the distributions with higher velocity and 
curvature, respectively. Based on this image, we can 
establish that the high-velocity region is surrounded 
by liquid. 

 
Fig. 15 The distribution of higher velocity in gas 
(yellow) and the distribution of curvature (blue) 

5 Conclusion 
In this paper, we propose the use of Volumetric 
Parallel Coordinates (VPC) to analyze multivariate 
time-varying volume data. VPC is especially useful to 
analyze “the temporal change of the relation between 
variables” when we wish to pay attention to both 
variables and time steps. We also proposed a graphical 
user interface to interactively access VPC data in a 
focused and contextualized manner.  

We applied the proposed method to a simulation of 
liquid atomization in order to evaluate the 
effectiveness of the proposed technique. As a result, 
we showed that VPC facilitates the exploration of 
temporal changes in the relation between variables. 
Using VPC, we found that the high-velocity region is 
surrounded by liquid. 

In future work, the interactive aspects of the graphical 
user interface should be improved. Currently, because 
the order of the variable axes under Parallel 
Coordinates and the number of bins are fixed, 
flexibility in these areas requires further attention.  
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