
NUMERICAL METHODS OF STRUCTURE 
OPTIMIZATION OF HOMOGENEOUS QUEUING 

NETWORKS
Boris V. Sokolov (Dr. Sci., Prof.), Sergey Kokorin

Saint-Petersburg Institute for Informatics and Automation of RAS, Information Technologies 
for Systems Analysis and Modeling laboratory,  39, 14 line, Saint-Petersburg, Russia

sokol@iias.spb.su (Boris V. Sokolov)

Abstract 

An  approach  to  an  implementation  of  the  numerical  optimization  for  a  structure  of 
homogeneous queuing networks is considered. The restrictions on optimizing parameters of 
different  nature  is  embedded  into  the  algorithm.  Examples  for  using  the  method  for 
efficiency and fail-safety of networks are presented. The usage of optimization for network 
degradation is included.
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1 Introduction

Calculation  and  analysis  of  the  characteristics  of 
queuing  networks  is  one  of  the  main  directions  of 
research  in  the  field  of  analytical  and  simulation 
modeling.  The  optimum  choice  of  those  or  other 
characteristics  is  often  beyond  the  scope  of 
formulating  and  solving  the  classical  problems  of 
analysis  for  systems and networks,  or  considered  in 
relation to the simplest models: an analytic solutions 
exist  for  the  considering  problems  (an  exponential 
distribution  of  service  time  and  interarrival  time  of 
orders [1]) . In this paper we consider a broader class 
of models of the queuing theory, allowing an arbitrary 
service  time distribution at  the nodes in the task of 
searching for optimal parameters of the network.

2 Queuing network properties 
calculation

The  calculation  of  open  homogeneous  networks, 
including the conversion of flows, in the general case 
includes the following steps [2]:

The  input  data  are  approximated  by  the  method  of 
moments with exponential (M), or hyper-exponential 
(phase, H) distributions, depending on the features of 
the model itself.

Initial  approximations  for  flows  of  orders  emerging 
from each network nodes is set i . These rates are 
taken from the solution of the system flows balance, 
defined below:

i= r0i∑
j=1

M

 j r ij , i=1,... , M. (1)

where  – total intensity of the flow from external 

sources, r ij  – elements of the matrix R (stationary 
transition probabilities between nodes), M – number 
of  network  nodes.  The  source  of  orders will  be 
referenced  as  0  node  and  sink  as  the  node number 
M+1.  A  similar  but  more  complex  system  of 
equations could be written for a situation, when input 
flow  is  approximated  with  hyper-exponential 
distribution (H).

The  limitation  of  the  numerical  methods  for  the 
calculation  of  stationary  characteristics  of  the 
network, namely the lack of the overload for each of 
the network nodes should be taken into account:

i bi1 /n i 1 (2)
Non-Markovian coefficients of interarrival   intervals 
is set to i=0, i=1, ... , M.

For nodes i=1,... , M :

• calculation of the thinned flows on the output 
of an each node to the input of i-th node;

• summation of  all  this  thinned flows on the 
input of an each node;

• Recalculation of non-Markovian coefficients 
 ' i of the i-th node and defining of  the 

preciseness coefficient i=∣i '−i∣;

• calculation of the node as an isolated queuing 
system of the given type;

• recalculation of the flow emerging from the i-
th node;

• if max
i
 i , i={1, ... , M } return  to 

the start of the algorithm.

The  calculation  of  moments  of  the  sojourn  time 
distribution of orders in the node at each visit.

Calculation  of  moments  of  the  the  sojourn  time 
distribution of orders in the network as a whole.

Using this algorithm, we can calculate the following 
network  features:  moments  of  the  sojourn  time 
distribution of orders in the network 1 ,... ,m , 
moments  of  waiting  time  for  an  each  node
11 , ... ,Mm  and coefficient of loading for an 

each node of the network 1, ... ,M .

3 Optimization methods

We  are  going  to  investigate  the  influence  of  the 
structure of a homogeneous network at its capacity. In 
this case the controlled parameters are the elements of 
the  matrix  of  transition  probabilities  R,  as  well  as 
uncontrolled parameters are all other characteristics of 
the  network  such  as  the  number  of  channels  and 
distributions  of  the  service  time  of  orders  in  each 
node. We consider two functions, that determine the 
effectiveness and the network resiliency, respectively, 
as objective functions:

1Rmin
R∈

, (3)

where  – set of admissible values of the matrix of 

stationary transition probabilities and 1R is the 

mean  sojourn  time  for  the  network  with  the  given 
transition matrix.

1/M∑
i=1

M

i
2−1 /M 2 ∑

i=1

M

i
2
min

R∈
. (4)

The formula (3) can be interpreted as minimizing the 
average transit time of the order through the queuing 
network, and formula (4), as the uniformity of loading 
between the available network nodes, we denote this 
objective function as  R .

For optimization of the objective functions described 
earlier  in  the  paper  are  used  two  methods:  global 
search method – the method of psi-transform [3], and 
a  method  of  numerical  optimization  without 



calculating derivatives - the method of  principal axes 
of Brent [4].

The  method  of  psi-conversion  is  a  method  for 
searching  the  global  extremum  of  the  objective 
function.  It  is  not  critical  to the choice of an initial 
approximation,  but  requires  of  significant 
computational  resources  in  the  case  when  the 
dimension of parameters to be optimized is increasing. 
We  chose  a  probability  measure  on  the  set  of 
modifiable  parameters  which  the  value  of  a  given 
objective function above a predetermined levels as a 
psi-function  at.  Thus,  the  problem  of  optimization 
reduces  to  finding  a  solution  to  the  equation  with 
many variables  (parameters  to  be  optimized).  Using 
this method as an independent method of optimization 
often yields results of the very low accuracy.

The algorithm of the method is stated below:

1. The estimation of the spread of values of the 
objective function by the random test.

2. Choose  of  the  value  levels
1Rl , l∈{1,... , L }  

3. Calculation of mean values of the objective 
function for each level by the means of the 
random test.

l=1/n ∑
{R k :1 Rkl }

1R
k 
−l  , (5)

n – number of random generations, Rk – 
parameters  of  the  k-th  generation, 

l∈{1,... , L }.

4. Calculation  of  the  mean  values  for 
optimizing parameters for each level.

x ijl=n/l ∑
R k :1 R

k
l

r ij
k 
1R

k
−l

 . (6)

5. The  parabolic  approximation  and  the 
extrapolation to the level 0.

Because of the high computational complexity of the 
method  of  psi-transformation  and  its  lack  of  the 
precision while solving problems of large dimensions 
is  proposed  the  method  of  principal  axes  of  Brent. 
This  method  focuses  on  local  optimization  of 
functions  of  several  variables  without  calculating 
derivatives. In practice, the method proved effective in 
the  solving  problems  of  optimization  of  network 
structure, including, for the case when the parameters' 
space  has  a  large  dimension  and  fairly  tight 
restrictions,  the  introduction  of  possible  restrictions 
will  be described below. The main drawback of the 
algorithm,  it  implements,  is  the  need  to  specify  the 
initial approximations, which should be calculated for 
an each task separately. In this case, the algorithm is 
characterized  by two main parameters:  the index of 
accuracy of the target function and the magnitude of 
step changes in parameters to be optimized. The first 
of these determines the moment to stop the iterative 

process,  the  second  determines  the  rate  of 
convergence of the algorithm.

The algorithm of the method is stated below:

1. Calculation of initial approximation R0 .

2. The  initial  directions  is  defining 

U 0
={u i

0
}i=1

N N2
= I , where I – the 

identity matrix of the given dimension.

3. Alternately,  the  optimal  value  is  searched 
along each direction.

4. The direction  vector  with minimal  index  is 
dropped and  new vector is substituted in the 
end of  direction  matrix 

RN N2
−R0 .

5. After  a  complete  change  of  a  set  of 
directional  vectors U N N2  ,  a  set  of 
directional  vectors  is  replacing  with  the 
orthogonal  matrix  that  approximates  the 
Hessian of the objective function in the point 
of current value.

6. Steps 3 – 5 is repeating till the achieving the 
given factor of preciseness.

For choosing and a determined initial approximation 
for the implementation of the method of principal axes 
is proposed the using of Jackson network model [4]. 
There is an analytic solution of the problem for it.

Multi-channel nodes are replaced with single-channel 
ones   with  proportionally  increased  intensity
 ' i=1/bi1⋅n i  , where  b i1 –  first  moment 

of service time distribution in the node, n i  – the 
number of channels in the i-th node. The exponential 
service time distribution at each node is approximated 
by  taking into account  the  first  moment  of  a  given 
distribution.  Sequential  bypassing  of  the  network  in 
width allowed to choose the initial estimates for each 
node,  according  to  the  solving  of  the  simple 
maximization problem:

∑
j=1

M1 rij

 ' j−rij j

min
i

, i={1,... , M }. (7)

The  usage  of  this  method  of  choosing  the  initial 
estimates is effective in the case of a small number of 
channels  at  the  nodes  and  a  low  value  of  the 
coefficient of variance of service time in the nodes. As 
an alternative to this method is the usage of the psi-
transformation method: its is preferable for networks 
where  the  service  time  distribution  differs 
significantly from the exponential. (For example, the 
uniform  distribution  on  an  interval  or  a  gamma 
distribution with high coefficient of variance.)



Tab. 1: Initial estimations comparison
Det. method Method  

Node 
num

value It. num value It. num Opt. 
value

3 2.91 319 2.91 651 2.18 

5 3.35 895 3.57 1293 3.19

8 4.9 6067 4.83 5419 4.53

13 7.02 21939 7.92 41345 6.57 

21 9.05 212939 8.84 201323 8.64

Table 1 shows the comparative initial values estimates 
for the mean of the distribution of the sojourn time of 
orders on the network for different numbers of nodes, 
the objective function with initial estimates obtained 
using the deterministic method and the method of psi-
transformation,  the number  of  calls  of  the  objective 
function for achieving the optimal value by means of 
the  method  of  principal  axes  and  the  value  of  the 
objective function after optimization.

4 Constraints

Consideration of  the  set  of  allowable  values 
includes  technical  constraints 

∑
j=0

j=M1

r ij=1, ∀ i∈{0, , M1 }, thus, 

ri0 ,... , ri , M1 –   discrete  distribution.  The 
same reasons implies that not all nodes are connected 
with each other, so many elements have the restriction 
of the form r ij=0. These limitations are taken into 
account  while  the  calculation  of  the  optimization 
method. It is assumed that we have the right to control 
not the whole matrix R, but only a certain subset of its 
elements.  In  addition,  we  can  impose  additional 
restrictions  on  the  parameters  of  the  matrix  R,  as 
follows:

 '  x , R=I x∈ '  ·R , (8)
where  I ⋅  is an  indicator of a set  membership 
 ' , defined by the user in an arbitrary way.

Constraints  allow  to  simulate  natural  restrictions 
associated to the technical features of the adequate use 
of  the  simulated  system,  as  well  as  considering 
additional  claims  regarding  the  behavior  of  the 
system.

We consider the constraints of following types:

• ar ijA , where  a,  A  –  arbitrary 
constants.  We do not check the consistency 
of constraints for different r ij . In the case 
when constraints are not consistent,  method 
won't find any suitable solution.

• aiA , where  a,  A  –  arbitrary 

constants,  i –  loading  coefficient  for 
node  i.

The  imposition  of  constraints  on  the  loading 
coefficients  of  nodes  can  decrease  the  chance  of 
deterioration  of equipment while working at the limit 
of  allowable  capacity  and  reservation  additional 
"durability" for execution in emergency situations.

The imposition of  restrictions on the coefficients  of 
the  matrix  of  stationary  transition  probabilities  can 
reflect  the  differences  in  routes  and  features  of 
transport links between nodes.

In  some  cases,  the  use  of  more  complex  kind  of 
penalty function, can significantly increase the speed 
of  convergence,  but  this  issue  requires  additional 
studies.

5 Degradation

An  example  of  the  applicability  of  the  approach 
described  for  optimization  of  the  network  structure 
can serve as a rapid redistribution of the flows at the 
moment of the failure of any network nodes [5], when 
you need to analyze the current situation and propose 
an optimal structure of the new network to report on is 
full refusal of service. 

Full  refusal  of  service  depends  on  the  network 
structure (even failure of one node can cause that): the 
network may break up into independent subnetworks, 
it  may cause  nodes become overloading  or  cause  a 
situation when orders can not access the network or 
leave  it.  Implemented  algorithms  can  signal  the 
occurrence of such situations. If such a situation did 
not  happen,  we  construct  a  new  network, 
corresponding  to  the  original  network  without  the 
failed node and try to optimize the matrix of stationary 
transition probabilities.

Construction of  the  subnetwork  involves  conversion 
of initial estimates, the transfer of existing constraints, 
the  analysis  of  the  matrix  R  by  the  following 
algorithm:

1. Remove from matrix R the row and column 
corresponding to failed node.

2. If the new matrix contains nodes,  such that 
all incoming flows for them are 0, then the 
node is  marked  as  failed and the algorithm 
goes back to 1.

3. Checking that there is at least one element for 
which r i , M10, also  searching  for  the 

element for which r 0, j0.

4. For all nodes we are checking the condition 
of no overloading (2).

The  optimization  is  carried  out  for  the  resulting 
network as for a new one with a given structure.



6 Simulations

As  an  example  we  introduce  the  network  of  fairly 
simple structure: Optimization of the network can be 
done only on elements of the matrix R, highlighted in 
Fig. 1 by black arrows.

The structure of this network is symmetrical,  so the 
degradation  is  sufficient  to  consider  only  the  cases 
where the nodes in the network is failed: 1, 2, 4, 5, 7, 
as the failure of the node 3 is equivalent to the failure 
of the node 1, 4 –  6, 7 – 8.

As an example  (fig.  2)  shows a  graph of  the  mean 
sojourn  time  of  orders  in  the  network  for  the  case 
when the loading coefficient of the node 5 is limited to 
0.2.  On the  x-axis plotted  numbers  of  failed  nodes. 
The  blue  line  indicated  the  mean  sojourn  time  for 
orders  in  the  original  (with  all  nodes  in  service) 
network.

Orange  line  shows the  deterioration  of  the  network 
capacity  while  one  node  is  failed  and  the  optimal 
transition matrix,  calculated  with methods described 
above, is used. As expected, the nodes 7 and 8 are the 
most critical in terms of sustainability of the system, 
while the failure of nodes 1, 2, 3, has almost no effect 
on the efficiency of the system.

7 Conclusions

We represent a numerical approach for a problem of 
optimization  of  characteristics  of  homogeneous 
queuing  networks.  It's  fast  enough  to  deal  with 
networks  of   the  hundreds  of  nodes.  It's  general  to 
include different types of service time and interarrival 
distributions. This paper includes the certain example 

of implementation of the  approach to the optimization 
of  transition  matrix  in  cases  of  nodes  failure  for 
redistributing  the  loading  among  other  nodes  in 
service.  The  approach  allows  minimize  the  losses 
while  repairing  period.  The  main  benefits  of  the 
proposed  combined  techniques  are  interrelated  with 
superposition of advantages of psi-transformation and 
Brent  principal  axis  methods  which  compensate 
disadvantages of corresponding approaches.
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Fig. 1: Network example
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