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Abstract

The Radon transform (RT) on straight lines deals as matheah&undation for

many imaging systems (e.g. X-ray scanner, Positron EnmisBionography) op-

erating only with non-scattered (primary) radiation. Wsi@ompton scattered
radiation has turned out to be an attractive alternativeotoventional emission
imaging. In this paper, we propose a new two-dimensionasgiom imaging from

Compton scattered gamma-rays. Its modeling leads to a Realtsform defined
on a pair of half-lines forming a vertical letter V (TV). Mareer we establish
the analytic inverse formula of this new TV, which forms thathrematical basis
for image reconstruction. Through simulations, image fatron and reconstruc-
tion results show the feasibility and the relevance of tlea maging. The main
advantage is to use a one-dimensional non-moving detemttwb-dimensional

image reconstruction.
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1 Introduction

Radon transforms in the plane [1] (particularly the case
of the straight lines) have been extensively studied ir
the past. These transforms are used to describe imagir
processes which do not involve scattered photons. A
scattered photons represent 80% of the emitted photon
collecting Compton scattered radiation for imaging pur-
poses [2, 3] has turned out to be an attractive alternativ
to conventional imaging. In general, scattered radiatior
acts as noise or disturbance which degrades image que
ity in imaging modalities working with primary radia-
tion. Collecting emanating scattered radiation for imag-
ing is the new idea which stands opposite to a tradition:
ally admitted view. Extensions of this idea have been
advocated in various directions [3]. In three dimen-
sions, image formation modeling leads to the so-callec
Conical Radon transform (CRT) and this has been sup X
ported by numerical simulations [2, 3, 4, 5].

Linear Detector

In this paper, we describe the implementation of thi
idea in two-dimensions. The modeling is achieve
by a two-dimensional version of the CRT, called the

compound V-line Radon transform (CTV). The simple

TV-transform was first proposed by Basko [6] in 1997 .

as a model for image formation in a two-dimensiona® Modeling of the Compton scattered
Compton camera. However this Basko transform is emission imaging (CSEI) and the V-line
in fact a V-line Radon transform with swinging axis Radon transform

around a detection site whereas the one considered here

has a fixed axis direction. This is the case in mang.1 Image formation modeling

applications, for example two-dimensional structures ; i ; :

L S ) . . . “For tomographic emission imaging, we consider a 2D-
In b_|omed|cal imaging or in materlgl non—destructl\_/e bject cogr]na?ning a non-unifo?m gradioactivity source
testing. One can think of a flat object (or a IT‘"“te”agistribution, which is represented by a non negative
slice),which has been turned into an _extende_d_gamrr&%minuous functioffi(x, y) with bounded support. A
ray emitting object. This can be realized by InJGCtIngcollimated linear detector collects only outgoing radia-

in its bulk medium a radiotracer which, after spreading, '« the object which is parallel to the direction of
unevenly throughout the body, emits gamma photons e collimator holes (Fig.1)

primary energyEy. ldeally, Compton scattered radia-
tion is collected by a collimated linear detector and usetf the detector is set to absorb gamma photons at ener-
to reconstruct the primary radiation source distributiomies belowE), the energy of primary photons, the pho-
of this object (see Fig.1). tons have undergone a Compton scattering at a\site
in the bulk of the object under a scattering angléNe
neglected higher order scattering which occurs with a

. . much smaller probability.
In section 2 we present the modeling of the new Comp- P 4

ton scattered emission imaging (CSEI) concept whiclihe photon flux density measured at a detecting3ite

leads to the V-line Radon transform. then we establisis due to the sum of scattered radiation flux densities

its analytic inverse and derive a corresponding filteredutgoing from the set of scattering sites lying along the

back-projection form. This last form has the advantagaxis of the collimator aD. As scattered photons have

of reconstructing the image by fast algorithms. energy E, they have been deflected from an incident
direction by a scattering angle, related to E by the
Compton formula :

ig. 1 Experimental setup for the detection of the pho-
ons and parameters used in the mathematical theory

In section 3, we present numerical simulations on im- Ey

age formation and reconstruction for a thyroid and a E= 1+ 2o (1 - cos(w)) @)
A \ 5

Shepp-Logan phantoms to support the feasibility of this me

new imaging. We show the_ main results on th_ese SIMYet ereme? — 0.511MeV.

lations. The paper ends with a short conclusion on the

obtained results and opens some future research p&hus the totality of the deflected density flux, for each

spectives. scattering sitéM, is due to the sum of all point sources




lying on the V-line withM as vertex.
zg —¢§
Yo

We use cartesian coordinates in Fig.1 , and ¢gl w)
the measured photon density fluxtunder the scat-
tering anglev . We can writeg(¢,w) as the sum over

all sitesM lying on a line parallel to the collimator hole Thus in a(w, ¢)-representation, this is just an arctan-
at a detection site &fV f (¢, n, w) curve.

t= SOw = arctan

960—5‘
Yo ’

‘. (5)

2.3 Inverse formulaTV 1!

 d
g(§,w) = K(w)/ %TVf(fﬂ%w), (2)  The inverse transfor'V~! can be worked out using
0 Fourier transformf (¢, w) (resp. g(g,w)) with respect

where K (w) contains the square of the classical cleclo the variable x (resgf) in f(z, y) (resp.g(, w)).

tron radius, the average electron density and the Klein-

Nishina scattering probability function g(€,w) = /OO dqi(q w)eQiﬂ-qf (6)
and where e
and -
TVf(Enw) = fooo %f(f + rsin(w),n + rcos(w)) flz,y) = / dqf(q,y)e*™e. (7
+ 57 L f(€ — rsin(w), n + reos(w)), Then equation (6) becomes
3) ~

this is the V-line Radon transform of the unknown ac- i(q,w) = 2/ %f(q, z)os(2mqzt). (8)
tivity distribution f(x, y). This is the reason why equa- 0o %

tion (2) is called the compound V-line Radon transform ] ] ]
(CTV) of f(z,y). We shall study first the V-line Radon Equation (8) then appears as a cosine-Fourier transform
transform given by equation (3). of F(q,z) = f(q,2)/2

2.2 Definition of the Radon transform on a V-line - R
(TV) (g, t) = 2/ dzF(q, z)os(2mqzt). 9
0

In the last integralf (z, y) is integrated on a discontin- Thus using the invertibility of the cosine transform, we
uous line having the form of the V-line with a symmetrycan obtain

axis parallel to a fixed direction. Thus image formation B 0o

by Compton scattered radiation in two dimensionsleads  f(q,t) = 2]¢| / dtg(q, tyxos(2mqzt). (20)

to a new concept of a Radon transform on a V-line. A 0

simple case of the V-line Radon transform is obtaineg . o
whens) = 0. erforming the Fourier inverse transform we can re-

cover f(x,y) which can be expressed as the result of
This simplification is in fact the imaging process ofan integral transform{V —') with the kernel [7]:
a ideal collimated one-dimensional Compton camera.
Primary radiation emitted from the object bulk is scat-
tered by a linear scattering detector, which lies alon —z 1 1
the Ox-axis of a cartesian coordinate system and agﬁw,z 6:8) = 55 @ —€120)° + (x—c+ 02|
sorbed just on a next layer along the vertical direction

by a second absorbing detector. This is to be understood as a generalized function, or

The V-line Radon transform T¥(z, y) is defined as an distribution.

integral of the functionf(x,y) with » = 0 in equa- To establish the inverse transform of the CTV, we can
tion (3). The factorl/r (resp. 1/r?) in the integrand consider it as a TV transform of the following function
accounts for the photometric law of photon propaga-

tion in two dimensions (resp. in three dimensions).

From now, onK (w) is included in the definition gfto dn

keep the writing(si)mple. Under the change of variables L(§,w) = / n f&mn w), (12)

t = tan(w) andz = rcos(w), equation (3) reads

y which can be viewed as a convolution product between
_ az _ the Fourier transform of /n and the Fourier transform
9(&:t) = /O [fle+tz2)+ f(E=t2,2)] (4) of f(&,m,w), as a function of). Thus the inverse of the
CTV is the product of a deconvolution in the dual vari-
The TV of a given point sourcéxzo,yo) : when able ton times TV-!. These two steps lead to a rather
flz,y) = 0(x —z0)d(y — yo) in equation (4y(&,t) is  involved analytic expression, which does not lend itself
the sum of two Dirac delta distributions, which have ao accurate numerical treatment. So we choose to con-
support in the uppét, £)-plane, consisting of two half- struct a new filtered back-projection method for image
lines, witht > 0, meeting att = 0 on the¢-axis and reconstruction which has the advantage of offering fast
having a slopety; ', ie : algorithms. This is done in the next section.



2.4 Inversion method by filtered back- the standard Radon transform on straight lines. The re-
projection(FBP-IM) construction formula (18) is mathematically equivalent

the reconstruction b’V —1! of the previous subsec-

n. But the advantage of the filtered back-projection

inversion formula is that it may be implemented by fast

%Igorithms.

Let us recall that the most popular inversion metho%oO
of the Radon transform is so-callefiitered back-
projection metho@BP), due to its similarity to the one
of standard Radon transform, but the novelty is that th
FBP is carried on the V-lines but not on the straight

lines. 3 Numerical simulations

In the Radon transform, the FBP is an exact inversiog 1 Simulation of the V-
formula by combining the action of the ramp filter and ™

the back-projection operation. We now derive the FBRye present now numerical simulations of the TV trans-
forthe TV. form of different geometrical objects. The algorithms

Technically the back projection principle consists in asPave beenimplemented with MATLAB. Many parame-
signing the valug (¢, w) to every point on the "projec- €rs play an important role in the numerical implemen-
tion” V-line, which has given rise to this value, and thertation of the TV transform such as the distance between
to sum over all contributions for every V-line "projec- the source and the detector, the angular sampling rate,
tion”. More precisely, the back-projection at anglén the dimension of the detector and the spatial sampling

(x,y) is the sum of projections at angleat the points rates. The quality of the reconstructions erer!ds .of
£ = x + ytanw andé, = x — ytanw, where(x,y)is  COUrse on these parameters (problems of discretization

projected - and interpolation) as well as on the geometry of the ob-
jects under study. The projection gives us the value of
Ry, (z,y) = g(z+ytanw,w)+g(x —ytanw,w). (13) the photon density flux on the points of the detector ac-
cording to the scattering angle (corresponding at the en-

ergy of photons). In view of the discretized image, it is

The back-projection of every projection defines they,5ortant to make good interpolation to match the data
back-projection operatdf'V# which is obtained by mz;rix of pixels. g P

summing over every angle. Here a y-factor appears
because ofir/r in the definition of the projections (3). we present now the results of numerical simulations.
The original images (Fig.2, 5) of sizel2 x 512 of

line Radon transform

Now the action of the ramp filter operatdr over . ; SO
a function f(z,y) in the first variable of a function length units represent respectively a thyroid with small

f(z,y) in the first variable is defined in Fourier spacg'dules phantom and a Shepp-Logan phantom. Fig.3
by Af(q Y) = |ql f(q y), where the Fourier transform anfl 6 shOV\?the T\étran?)fggm of;heé)giztom_s Wl'l'h an-
; ’ I gular sampling ratdw = 0.005 rad an projections

is taken on. From equation (10) we have (m/2/70.005 = 314) which are the images of Compton
scattered radiation on the camera in terms of the dis-

flz,y) = y/ (Ag)(x + ty,t) + (Ag)(z — ty,t))dt. tancef and the scattering angle
0

) ) (14)  Wwe note that the shape of the V-line Radon trans-
In terms of the angle, the inversion formulareads:  form (or the shape of the projections) in tle, ¢)-
representation is consistent with the arctan-curve

Py =y [ 222 [(Ag)(@ + ytanw, w) (Fig.3, 6 and see equation (5)). It is observed that the
large values of the V-line Radon transform are obtained
+ (Ag)(z — ytan(w),w)]. at the small scattering angles and vice versa. Thes re-
(15)  sults are consistent with the physical phenomenom of

Defining the operatob/,, as scattering (at the large, the Klein-Nishina probabil-
ity decreases rapidly) and the photon density flux is in-

Mog(€,w) = 9(§,w) (16) versely proportional to the distance source-deteefor (

@IS cos?w hence proportional tg. (Fig.3, 6)

and knowing that 3.2 Difficulties of simulation of the analytic inverse
transform TV —!

TV#g(z,y) =1 fOW/Q dw [g(x + ytanw, w)

Y (17)  The simulation of the analytic inverse formula poses a

+ g(ztanw,w)]. real mathematical challenge to overcome. In fact the

kernels (equations (9,10)) of the integrals are singular.

We recover the original density f(x,y) by a filtered-backMoreover integration boundaries of these integrals are

projection at infinity. So several problems of discretization and
interpolation arise. We choose the inversion method
flz,y) =y* (TVFMATV f) (z,y). (18) by filtered back-projection (FBP) because it gives the

satisfactory results in reasonably computational time.
This filtered-back projection inversion on V-lines, ob-Moreover it is proved that the FBP is equivalent to the
tained for the first time, generalizes the one known iinverse transforndV —!.



3.3 Filtered back-projection

The reconstruction is performed using the filtered
back-projection inversion method (FBP) of the TV-
transform. However, back-projection on V-lines gener-
ates more artifacts than back-projection on straight lines
in standard two-dimensional Radon transform, due to
the existence of more spurious line intersections. In or-
der to reduce these artifacts, the Hann filteiis used.

It is defined on the Fourier domain by its action on the
first variable of a functiory as follows :

Hf(qy) = %(1 + cos(2mq)) f (¢, y), (19)
where the Fourier transform is taken on the first vari-
able. The reconstruction quality shows the feasibility
of this imaging modality.

The reconstructions using FBP are given in Fig.4 and
7. The artifacts are due to the limited number of projec-
tions. A choice of a smalledw would improve image
quality. But when the number of projections is about
equal to the number of pixels the reconstruction quality
is stable. In order to qualify the reconstruction quality
we use the mean square error (MSE) which is defined
as:

2
Imageoriginal - Imagereconstructed)

(
MSE =
Numberpizels

(20)

We obtain the MSE 2.8 x 1073 for dw = 0.005 rad
and the MSE =2 x 1072 for dw = 0.0025 rad (twice
smaller than the previous case) (Fig.7, 8). This shows
the robustness of the proposed method.

These results illustrate undoubtedly the feasibility of
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Fig. 2 Original thyroid phantom

the new imaging modality, for which the main ad-Fig. 3 The TV transform of the thyroid image shown in
vantage resides in the use of a one-dimensional nopig. 2 withdw =0.005 rad, the arctan form of this result
moving Compton camera for two-dimensional images consistent with the mathematical theory.

processing, see Fig.1.

4 Conclusion

In this paper, we present a new Compton scattering to-
mography, its modeling and simulations with the help
of a novel class of Radon transform defined on a discon-
tinuous line having the shape of a V letter. We show that
its analytic inverse transform poses some difficulties for
numerical simulations. Fortunately, this transform is
equivalent to filtered back-projection inversion method
for which numerical simulations turn out to be efficient.
Finally the simulation results support the feasibility and
the relevance of the new proposed imaging in which the
main advantage resides in the two-dimensional image
reconstruction from scattered radiation collected by a
one-dimensional collimated non-moving camera.

Furthermore, the extension of the V-line Radon trans-

-300 -200 -100 0 100 200 300

form to a family of cones with swinging axis aroundFig. 4 FBP-IM reconstruction of the thyroid image with
a site in the space corresponding to a gamma camefa =0.005 rad, the small structures in the object are
without mechanical collimator, poses a real mathematiearly reconstructed.

ical challenge to overcome in the future.
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Fig. 5 Original Shepp-Logan phantom
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Fig. 7 FBP-IM reconstruction of the Shepp-Logan im-

age withdw =0.005 rad.
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Fig. 6 The TV transform of the Shepp-Logan imagerig. 8 FBP-IM reconstruction of the Shepp-Logan im-

shown in Fig. 5 withdw =0.005 rad.
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age withdw =0.0025 rad, the quality is slightly im-

proved compared to Figure 7.
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