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Abstract

The Radon transform (RT) on straight lines deals as mathematical foundation for
many imaging systems (e.g. X-ray scanner, Positron Emission Tomography) op-
erating only with non-scattered (primary) radiation. Using Compton scattered
radiation has turned out to be an attractive alternative to conventional emission
imaging. In this paper, we propose a new two-dimensional emission imaging from
Compton scattered gamma-rays. Its modeling leads to a Radontransform defined
on a pair of half-lines forming a vertical letter V (TV). Moreover we establish
the analytic inverse formula of this new TV, which forms the mathematical basis
for image reconstruction. Through simulations, image formation and reconstruc-
tion results show the feasibility and the relevance of this new imaging. The main
advantage is to use a one-dimensional non-moving detector for two-dimensional
image reconstruction.
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1 Introduction

Radon transforms in the plane [1] (particularly the case
of the straight lines) have been extensively studied in
the past. These transforms are used to describe imaging
processes which do not involve scattered photons. As
scattered photons represent 80% of the emitted photons,
collecting Compton scattered radiation for imaging pur-
poses [2, 3] has turned out to be an attractive alternative
to conventional imaging. In general, scattered radiation
acts as noise or disturbance which degrades image qual-
ity in imaging modalities working with primary radia-
tion. Collecting emanating scattered radiation for imag-
ing is the new idea which stands opposite to a tradition-
ally admitted view. Extensions of this idea have been
advocated in various directions [3]. In three dimen-
sions, image formation modeling leads to the so-called
Conical Radon transform (CRT) and this has been sup-
ported by numerical simulations [2, 3, 4, 5].

In this paper, we describe the implementation of this
idea in two-dimensions. The modeling is achieved
by a two-dimensional version of the CRT, called the
compound V-line Radon transform (CTV). The simple
TV-transform was first proposed by Basko [6] in 1997
as a model for image formation in a two-dimensional
Compton camera. However this Basko transform is
in fact a V-line Radon transform with swinging axis
around a detection site whereas the one considered here
has a fixed axis direction. This is the case in many
applications, for example two-dimensional structures
in biomedical imaging or in material non-destructive
testing. One can think of a flat object (or a material
slice),which has been turned into an extended gamma
ray emitting object. This can be realized by injecting
in its bulk medium a radiotracer which, after spreading
unevenly throughout the body, emits gamma photons of
primary energyE0. Ideally, Compton scattered radia-
tion is collected by a collimated linear detector and used
to reconstruct the primary radiation source distribution
of this object (see Fig.1).

In section 2 we present the modeling of the new Comp-
ton scattered emission imaging (CSEI) concept which
leads to the V-line Radon transform. then we establish
its analytic inverse and derive a corresponding filtered
back-projection form. This last form has the advantage
of reconstructing the image by fast algorithms.

In section 3, we present numerical simulations on im-
age formation and reconstruction for a thyroid and a
Shepp-Logan phantoms to support the feasibility of this
new imaging. We show the main results on these simu-
lations. The paper ends with a short conclusion on the
obtained results and opens some future research per-
spectives.

Fig. 1 Experimental setup for the detection of the pho-
tons and parameters used in the mathematical theory

2 Modeling of the Compton scattered
emission imaging (CSEI) and the V-line
Radon transform

2.1 Image formation modeling

For tomographic emission imaging, we consider a 2D-
object containing a non-uniform radioactivity source
distribution, which is represented by a non negative
continuous functionf(x, y) with bounded support. A
collimated linear detector collects only outgoing radia-
tion from the object which is parallel to the direction of
the collimator holes (Fig.1).

If the detector is set to absorb gamma photons at ener-
gies belowE0, the energy of primary photons, the pho-
tons have undergone a Compton scattering at a siteM
in the bulk of the object under a scattering angleω. We
neglected higher order scattering which occurs with a
much smaller probability.

The photon flux density measured at a detecting siteD
is due to the sum of scattered radiation flux densities
outgoing from the set of scattering sites lying along the
axis of the collimator atD. As scattered photons have
energy E, they have been deflected from an incident
direction by a scattering angleω, related to E by the
Compton formula :

E =
E0

1 + E0

mc2 (1− cos(ω))
(1)

wheremc2 = 0.511MeV.

Thus the totality of the deflected density flux, for each
scattering siteM , is due to the sum of all point sources



lying on the V-line withM as vertex.

We use cartesian coordinates in Fig.1 , and callg(ξ, ω)
the measured photon density flux atD under the scat-
tering angleω . We can writeg(ξ, ω) as the sum over
all sitesM lying on a line parallel to the collimator hole
at a detection site ofTV f(ξ, η, ω)

g(ξ, ω) = K(ω)

∫

∞

0

dη

η
TV f(ξ, η, ω), (2)

whereK(ω) contains the square of the classical elec-
tron radius, the average electron density and the Klein-
Nishina scattering probability function

and where

TV f(ξ, η, ω) =
∫

∞

0
dr
r f(ξ + rsin(ω), η + rcos(ω))

+
∫

∞

0
dr
r f(ξ − rsin(ω), η + rcos(ω)),

(3)
this is the V-line Radon transform of the unknown ac-
tivity distributionf(x, y). This is the reason why equa-
tion (2) is called the compound V-line Radon transform
(CTV) of f(x, y). We shall study first the V-line Radon
transform given by equation (3).

2.2 Definition of the Radon transform on a V-line
(TV)

In the last integral,f(x, y) is integrated on a discontin-
uous line having the form of the V-line with a symmetry
axis parallel to a fixed direction. Thus image formation
by Compton scattered radiation in two dimensions leads
to a new concept of a Radon transform on a V-line. A
simple case of the V-line Radon transform is obtained
whenη = 0.

This simplification is in fact the imaging process of
a ideal collimated one-dimensional Compton camera.
Primary radiation emitted from the object bulk is scat-
tered by a linear scattering detector, which lies along
the Ox-axis of a cartesian coordinate system and ab-
sorbed just on a next layer along the vertical direction
by a second absorbing detector.

The V-line Radon transform TVf(x, y) is defined as an
integral of the functionf(x, y) with η = 0 in equa-
tion (3). The factor1/r (resp. 1/r2) in the integrand
accounts for the photometric law of photon propaga-
tion in two dimensions (resp. in three dimensions).
From now, onK(ω) is included in the definition off to
keep the writing simple. Under the change of variables
t = tan(ω) andz = rcos(ω), equation (3) reads

g(ξ, t) =

∫

∞

0

dz

z
[f(ξ + tz, z) + f(ξ − tz, z)] . (4)

The TV of a given point source(x0, y0) : when
f(x, y) = δ(x− x0)δ(y − y0) in equation (4)g(ξ, t) is
the sum of two Dirac delta distributions, which have a
support in the upper(t, ξ)-plane, consisting of two half-
lines, with t > 0, meeting atξ = 0 on theξ-axis and
having a slope±y−1

0 , ie :

t =

∣

∣

∣

∣

x0 − ξ

y0

∣

∣

∣

∣

, soω = arctan

∣

∣

∣

∣

x0 − ξ

y0

∣

∣

∣

∣

. (5)

Thus in a(ω, ξ)-representation, this is just an arctan-
curve.

2.3 Inverse formulaTV −1

The inverse transformTV −1 can be worked out using
Fourier transformf̃(q, ω) (resp. g̃(q, ω)) with respect
to the variable x (resp (ξ)) in f(x, y) (resp.g(ξ, ω)).

g(ξ, ω) =

∫

∞

−∞

dqg̃(q, ω)e2iπqξ (6)

and

f(x, y) =

∫

∞

−∞

dqf̃(q, y)e2iπqx. (7)

Then equation (6) becomes

g̃(q, ω) = 2

∫

∞

0

dz

z
f̃(q, z)cos(2πqzt). (8)

Equation (8) then appears as a cosine-Fourier transform
of F̃ (q, z) = f̃(q, z)/z

g̃(q, t) = 2

∫

∞

0

dzF̃ (q, z)cos(2πqzt). (9)

Thus using the invertibility of the cosine transform, we
can obtain

f̃(q, t) = 2 |q|

∫

∞

0

dtg̃(q, t)cos(2πqzt). (10)

Performing the Fourier inverse transform we can re-
coverf(x, y) which can be expressed as the result of
an integral transform (TV −1) with the kernel [7]:

k(w, z |ξ, t) =
−z

2π2

[

1

(x− ξ + zt)2
+

1

(x− ξ + zt)2

]

,

(11)
This is to be understood as a generalized function, or
distribution.

To establish the inverse transform of the CTV, we can
consider it as a TV transform of the following function

L(ξ, ω) =

∫

dη

η
f(ξ, η, ω), (12)

which can be viewed as a convolution product between
the Fourier transform of1/η and the Fourier transform
of f(ξ, η, ω), as a function ofη. Thus the inverse of the
CTV is the product of a deconvolution in the dual vari-
able toη times TV−1. These two steps lead to a rather
involved analytic expression, which does not lend itself
to accurate numerical treatment. So we choose to con-
struct a new filtered back-projection method for image
reconstruction which has the advantage of offering fast
algorithms. This is done in the next section.



2.4 Inversion method by filtered back-
projection(FBP-IM)

Let us recall that the most popular inversion method
of the Radon transform is so-calledfiltered back-
projection method(FBP), due to its similarity to the one
of standard Radon transform, but the novelty is that the
FBP is carried on the V-lines but not on the straight
lines.

In the Radon transform, the FBP is an exact inversion
formula by combining the action of the ramp filter and
the back-projection operation. We now derive the FBP
for the TV.

Technically the back projection principle consists in as-
signing the valueg(ξ, ω) to every point on the ”projec-
tion” V-line, which has given rise to this value, and then
to sum over all contributions for every V-line ”projec-
tion”. More precisely, the back-projection at angleω in
(x,y) is the sum of projections at angleω at the points
ξ1 = x + ytanω andξ2 = x − ytanω, where(x,y) is
projected :

Rω(x, y) = g(x+ytanω, ω)+g(x−ytanω, ω). (13)

The back-projection of every projection defines the
back-projection operatorTV # which is obtained by
summing over every angleω. Here a y-factor appears
because ofdr/r in the definition of the projections (3).

Now the action of the ramp filter operatorΛ over
a functionf(x, y) in the first variable of a function
f(x, y) in the first variable is defined in Fourier space
by Λf̃(q, y) = |q| f̃(q, y), where the Fourier transform
is taken onx. From equation (10) we have

f(x, y) = y

∫

∞

0

(Λg)(x+ ty, t) + (Λg)(x− ty, t))dt.

(14)
In terms of the angleω, the inversion formula reads:

f(x, y)y = y2
∫ π/2

0
dω

cos2ω [(Λg)(x+ ytanω, ω)

+ (Λg)(x− ytan(ω), ω)] .
(15)

Defining the operatorMω as

Mωg(ξ, ω) =
g(ξ, ω)

cos2ω
(16)

and knowing that

TV #g(x, y) = 1
y

∫ π/2

0
dω [g(x+ ytanω, ω)

+ g(xtanω, ω)] .

(17)

We recover the original density f(x,y) by a filtered-back
projection

f(x, y) = y2
(

TV #MωΛTV f
)

(x, y) . (18)

This filtered-back projection inversion on V-lines, ob-
tained for the first time, generalizes the one known in

the standard Radon transform on straight lines. The re-
construction formula (18) is mathematically equivalent
to the reconstruction byTV −1 of the previous subsec-
tion. But the advantage of the filtered back-projection
inversion formula is that it may be implemented by fast
algorithms.

3 Numerical simulations

3.1 Simulation of the V-line Radon transform

We present now numerical simulations of the TV trans-
form of different geometrical objects. The algorithms
have been implemented with MATLAB. Many parame-
ters play an important role in the numerical implemen-
tation of the TV transform such as the distance between
the source and the detector, the angular sampling rate,
the dimension of the detector and the spatial sampling
rates. The quality of the reconstructions depends of
course on these parameters (problems of discretization
and interpolation) as well as on the geometry of the ob-
jects under study. The projection gives us the value of
the photon density flux on the points of the detector ac-
cording to the scattering angle (corresponding at the en-
ergy of photons). In view of the discretized image, it is
important to make good interpolation to match the data
matrix of pixels.

We present now the results of numerical simulations.
The original images (Fig.2, 5) of size512 × 512 of
length units represent respectively a thyroid with small
nodules phantom and a Shepp-Logan phantom. Fig.3
and 6 show the TV transform of the phantoms with an-
gular sampling ratedω = 0.005 rad and 314 projections
(π / 2 / 0.005 = 314) which are the images of Compton
scattered radiation on the camera in terms of the dis-
tanceξ and the scattering angleω.

We note that the shape of the V-line Radon trans-
form (or the shape of the projections) in the(ω, ξ)-
representation is consistent with the arctan-curve
(Fig.3, 6 and see equation (5)). It is observed that the
large values of the V-line Radon transform are obtained
at the small scattering angles and vice versa. Thes re-
sults are consistent with the physical phenomenom of
scattering (at the largeω, the Klein-Nishina probabil-
ity decreases rapidly) and the photon density flux is in-
versely proportional to the distance source-detector (r),
hence proportional to1r . (Fig.3, 6)

3.2 Difficulties of simulation of the analytic inverse
transform TV −1

The simulation of the analytic inverse formula poses a
real mathematical challenge to overcome. In fact the
kernels (equations (9,10)) of the integrals are singular.
Moreover integration boundaries of these integrals are
at infinity. So several problems of discretization and
interpolation arise. We choose the inversion method
by filtered back-projection (FBP) because it gives the
satisfactory results in reasonably computational time.
Moreover it is proved that the FBP is equivalent to the
inverse transformTV −1.



3.3 Filtered back-projection

The reconstruction is performed using the filtered
back-projection inversion method (FBP) of the TV-
transform. However, back-projection on V-lines gener-
ates more artifacts than back-projectionon straight lines
in standard two-dimensional Radon transform, due to
the existence of more spurious line intersections. In or-
der to reduce these artifacts, the Hann filterH is used.
It is defined on the Fourier domain by its action on the
first variable of a functionf as follows :

H̃f(q, y) =
|q|

2
(1 + cos(2πq))f̃ (q, y), (19)

where the Fourier transform is taken on the first vari-
able. The reconstruction quality shows the feasibility
of this imaging modality.

The reconstructions using FBP are given in Fig.4 and
7. The artifacts are due to the limited number of projec-
tions. A choice of a smallerdω would improve image
quality. But when the number of projections is about
equal to the number of pixels the reconstruction quality
is stable. In order to qualify the reconstruction quality
we use the mean square error (MSE) which is defined
as :

MSE =
(Imageoriginal − Imagereconstructed)

2

Numberpixels
.

(20)

We obtain the MSE =2.8 ∗ 10−3 for dω = 0.005 rad
and the MSE =2 ∗ 10−3 for dω = 0.0025 rad (twice
smaller than the previous case) (Fig.7, 8). This shows
the robustness of the proposed method.

These results illustrate undoubtedly the feasibility of
the new imaging modality, for which the main ad-
vantage resides in the use of a one-dimensional non-
moving Compton camera for two-dimensional image
processing, see Fig.1.

4 Conclusion
In this paper, we present a new Compton scattering to-
mography, its modeling and simulations with the help
of a novel class of Radon transform defined on a discon-
tinuous line having the shape of a V letter. We show that
its analytic inverse transform poses some difficulties for
numerical simulations. Fortunately, this transform is
equivalent to filtered back-projection inversion method
for which numerical simulations turn out to be efficient.
Finally the simulation results support the feasibility and
the relevance of the new proposed imaging in which the
main advantage resides in the two-dimensional image
reconstruction from scattered radiation collected by a
one-dimensional collimated non-moving camera.

Furthermore, the extension of the V-line Radon trans-
form to a family of cones with swinging axis around
a site in the space corresponding to a gamma camera
without mechanical collimator, poses a real mathemat-
ical challenge to overcome in the future.

Fig. 2 Original thyroid phantom

Fig. 3 The TV transform of the thyroid image shown in
Fig. 2 withdω =0.005 rad, the arctan form of this result
is consistent with the mathematical theory.

Fig. 4 FBP-IM reconstruction of the thyroid image with
dω =0.005 rad, the small structures in the object are
clearly reconstructed.
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Fig. 5 Original Shepp-Logan phantom
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Fig. 6 The TV transform of the Shepp-Logan image
shown in Fig. 5 withdω =0.005 rad.
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